
A General
Confidentiality

Protocol
for

Blockchain
Transactions

Mystiko.Network
March 14, 20231

1 Introduction

In this document, we introduce a general confidentiality protocol with additional zk-rollup for
cross-chain and single-chain transactions.

1.1 Motivation

Currently, the write operation is an atomic operation, i.e., after a user sends a cross-chain
or single-chain transaction the source blockchain network will transfer it to the destination
blockchain network. In such protocol, the sender and receiver addresses are in plain text, and
one may track the transaction graph. Many research shows that this setting cannot provide
privacy. To address this issue, we employ a similar solution as in Zcash: the transaction is
encrypted with the public key of the receiver, and this receiver can then find the transaction
and spend the coin. It is noteworthy that the sender and receiver may be on the same chain, i.e.,
the user sends a single-chain transaction, and the source chain and the destination chain are on
the same chain. Alternatively, the user can send a cross-chain transaction, and the source chain
and the destination chain are on different chains. In the new version, we support JoinSplit and
allow internal transfers. The encrypted transaction could provide privacy; however, it could
be abused for criminal purposes. We build a confidential protocol while making it auditable
for auditors, and the protocol will not disclose users’ transaction data unless a large enough
partition of the auditors agree so.

1.2 Protocol Overview

Suppose u on Block A want to send a coin valued v to u1 on Block B, where v belongs to
some default values V. Let PRF addr

x (·), PRF sn
x (·) and PRF pk

x (·) denote three pseudorandom
functions for a seed x. Each user ui generates an address key pair (addrpk,i, addrsk,i), where
addrpk,i = (apk,i, pkenc,i) and addrsk,i = (ask,i, skenc,i), and a nullifier key nk. apk,i is generated as
PRF addr

ask
(0). nk is generated as PRF addr

ask
(1).(pkenc,i, skenc,i) are key-private encryption scheme.

Here, we outline the protocol in three steps:

(1) u generates randomness r, s, and ρ, where ρ is the coin’s serial number randomness. Let
COMM denote a commit scheme and Eenc denote a public-key encryption scheme. u com-
mits the serial number in two steps (1) k = COMMr(apk,1||ρ) (2)cm := COMMs(v||k).
Then, u computes the ciphertext Ct = Eenc(pkenc, v, ρ, r, s). The tuple (v, k, s, cm,Ct) is
the new transaction txdeposit. The leger will keep a CRH(collision-resistant hash)-based
Merkle tree CMList of all committed serial numbers (cm). If cm is already in the
ledger, the transaction will be rejected. Logically, the coin u sends to u1 is defined as
c := (apk,1, v, ρ, r, s, cm)

(2) u1 can scan over the public ledger and find the transaction txdeposit. The user then
decrypts Ct and gets (v, ρ, r, s).

1

TODO: Design of the wallet

(3) When u1 wants to spend the coin (or more than one received coins) , u1 will generate two
new coins cnew1 cnew2 and a zk-SNARK proof πSPEND over the following statements:
For each old coins c, given the Merkle root rt, serial number sn, I know c and address
secret key ask,1 s.t.

• c is well-formatted.

• The address secret key matches the public key, i.e., apk,1 = PRF addr
ask,1

(0).

• The nullifier key matches the address secret key, i.e., nk = PRF addr
ask,1

(1).

• The serial number is computed correctly, i.e., sn = PRF sn
nk (ρ).

• The coin commitment cm appears as a leaf of Merkle-tree with root rt.

• New coins cnew1 and cnew2 are well formatted.

• vnew1 + vnew2 + vpub =
∑
v.

The spend transaction txspend := ([(rt, sn)], cmnew
1 , cmnew

2 , vpub, ADDR, πSPEND) is ap-
pended in the ledger, where ADDR is the plain text address, and [(rt, sn)] is a set of the
Merkle root and the serial number for each old coins. The relayer will verify the proof
and check if all sn do not appear on the ledger. It will send the public coin to ADDR
and new coins cnew1 and cnew2 to anonymous addresses if validated. Furthermore, we em-
ploy a MAC scheme to prevent malleability attacks. When spending a coin, the user
samples a key pair (pksig, sksig) and use sksig sign every value associated with the txspend
transaction. The user also computes hsig := CRH(pksig) and h := PRF pk

ask
(hsig), which

acts like a MAC to sign the secret address key. The user then modifies the statement to
prove that h is computed correctly. The signature σ along with pksig are included in the
txspend transaction. The overview process is illustrated in Figure 1.

To meet regulations, when u1 spends coins, he has to disclose the commitments of old coins
[c] to auditors, and the auditors could then track the transaction link. Suppose there are n
auditors, and to audit users’ transactions there should be more than t auditors agree. The
user divides commitments [cm] into n pieces [cma

1, cm
a
2, . . . , cm

a
n] using (t, n)−secret sharing,

in which one can recover the commitments only if he has more than t pieces. The user then
encrypts each share with an auditor’s public key and sends it to the corresponding auditor.
The auditors can decrypt the received messages and jointly recover the commitments. Let
Share(t,n) denotes a (t, n)-secret sharing scheme and Recover(t,n) denotes the recovering shceme.
(pkaenc,i, sk

a
enc,i) are auditors’ elliptic curve key pair. To provide a zero knowledge friendly, we

leverage an elliptic curve hybrid encryption scheme.[KD04] Namely, the protocol generates a
shared secret key ka in a symmetric-key encryption scheme (SEC.Enck, SEC.Deck) from a
public key scheme. Let (pkau, sk

a
u) denote a elliptic curve key pair for audit purpose. We then

set kai = skau · pkaenc,i = skaenc,i · pkau and the encrypted message msgai = SEC.Enckai (cma
i). The

2

Relayer Relayer Relayer
SRC Chain

DST Chain

(1)

(2) (3)

(1) u1 locks his coin
(2) u2 finds the transaction
(3) u2 spends the coin

Figure 1: solution overview for write operation

user then proofs following statements along with other statements in πSPEND:
Let G be the generator in the elliptic curve. Given commitments [cm]. encrypted messages
[msga1 ,msg

a
2 , . . . ,msg

a
n] and public keys pkau, [pk

a
enc,i], I know [cma

1, cm
a
2, . . . , cm

a
n] and skau s.t.

• The commitments are well secret shared, i.e., [cma
1, cm

a
2, . . . , cm

a
n] = Share(t,n)([cm]).

• The public key match the private key, i.e., pkau = skauG.

• Each commitments share is well encrypted, i.e., msgai = SEC.Encskaupkaenc,i
(cma

i).

1.3 Architecture Overview

In this section, we illustrated the overview of architecture. We described the overview protocols
and algorithms for depositing and spending coins in section 1.2, and Mystiko implements the
algorithms in two phases: Mystiko Deposit and Mystiko Withdraw. During the Mystiko
Deposit phase, a user sends coins from a source chain to a destination chain via a bridge,
and Mystiko locks those coins on the source chain. It is noteworthy that Mystiko employs the
bridge as a data bridge instead of an asset bridge, i.e., the bridge actively syncs invokes and
events only. Moreover, all private notes are encrypted. Only the user with the corresponding
private key may decrypt it; therefore, only this user could generate the valid zero-knowledge
proof and spend the coin.

If the receiver wants to withdraw the coins, he then generates a withdraw transaction off-
chain and verifies it on-chain. As mentioned in section 1.2, Mystiko keeps a Merkle tree for
all deposited coins and updates the tree when adding a new coin. This operation could be
expensive if we operate it on-chain. In Mystiko, we solved this problem with ZK-Rollups.
Namely, a ZK-Rollup miner will pull on-chain deposits locally and calculate a Merkle tree root.

3

The miner then generates a zero-knowledge proof: the Merkle tree root is correct and validated.
He then sends the proof with the root to the contract, and if the proof is validated, we update
the Merkle tree root.

2 Definition of the Protocol

We introduce the notion of the anonymous protocol. This section is similar to the notion of
zerocash.[BSCG+14]

2.1 Data Structures

We describe the data structures used in the protocol.
Ledger This protocol is based on a blockchain network. There are two ledgers: the source
chain’s ledger Lsrc and the destination chain’s ledger Ldst. At any given time T , all users have
access to L

{src,dst}
T . Both ledgers are appended only.

Public parameters. 1 A list of public parameters pp is available to all users in the system.
These are generated by a trusted party at the “start of time” and are used by the system’s
algorithms.
Address. 2 Each user generates at least one address key pair (addrpk, addrsk) and a nullifier
key nk. The public key addrpk is published and enables others to direct payments to the user.
The secret key addrsk is used to receive payments sent to addrpk. The nullifier key nk is used
to generate serial numbers of receiving coins. A user may generate any number of address key
pairs.
Auditable keys. Each user generates at least one auditable key pair (pkau, sk

a
u). The public

key pkau is published and enables auditors to generate the shared secret key with their own
private keys. The private key skau is used to generate the shared secret key with the auditors’
public keys.
Coin. A coin is data object c. Across this paper, c refers to a logical coin since a user will
not mint a new coin when transferring the coin. A coin is associated with commitment, value,
serial number, address.

• commitment, denoted cm(c): a string that appears on the ledger once c is deposited.

• value, denoted v(c): the denomination of c. We limit the value within some pre-defined
default values, denoted V, i.e., v ∈ V.

• serial number, denoted sn(c): a unique string associated with c, used to prevent double
spending.

1Taken from [BSCG+14] 3.1 Data structures Public parameters
2Taken from [BSCG+14] 3.1 Data structures Addresses

4

• address, denoted addrpk(c): an address public key, representing who owns c.

Transaction. We introduce three new transactions.

• Deposit transactions. A deposit transaction txdeposit is a tuple (cm, v, ∗), where cm is the
coin commitment, v is the coin value, and ∗ are other information , e.g., randomness.
The transaction txdeposit records that a user deposites a coin with commitment cm and
value v, which could be spent on other chains.

• Spend transactions. A spend transaction txspend is a tuple ([(rt, sn)] , cmnew
1 , cmnew

2 , vpub,
ADDR, πSPEND, [msga1 ,msg

a
2 , . . . ,msg

a
n], ∗), where [(rt, sn)] is a set of the Merkle root

and the serial number for each old coins, cmnew
1 , cmnew

2 are commitments of new coins,
vpub is the public coin value, ADDR is a plain text address, [msga1 ,msg

a
2 , . . . ,msg

a
n] are

encrypted messages for the audit, and ∗ denotes other information. The transaction
txspend records that a user spends some coins c and sends a coin to a public address
and two new coins to anonymous addresses. It also contains messages that auditors may
decrypt and track the transaction then.

• ZK-rollup transactions. A ZK-rollup transaction txrollup is a tuple (rtold, rtnew, hash[cm],
pathIndices,N rollup, πROLLUP , ∗), where rtold is the old Merkle tree root, rtnew is the
new Merkle tree root after updating with coin commitments [cm], hash[cm] is the hash of
[cm], pathIndices is the direction selector of the authentication path of [cm], N rollup is the
number of commitments been rolluped, and ∗ denotes other information. The transaction
txrollup records that a user update the commitment tree with a set of deposited coin
commitments.

Committed of deposit coins and serial numbers of spend coins. For any given time T

• CMListT denotes the list of all commitments appearing in deposit transactions in LsrcT .

• SNListT denotes the list of all serial numbers appearing in spend transactions in LsrcT

Merkle tree over commitments. For any given time T , TreeT denotes a Merkle tree
over CMListT and rtT is the root. PathT (cm) denotes the path function which outputs the
authentication path given a coin commitment cm.
Queue of commitments. For any given time T , Qcm

T denotes a queue of commitments waiting
for rollup.

2.2 Algorithms

The protocol Π is a tuple of polynomial-time algorithms
Setup, CreateAddress, Deposit, Spend, Rollup, V erifyTransaction, Receive, Audit
with the following syntax and semantics.
System setup. The algorithm Setup generates a list of public parameters:

5

• Inputs: security parameter λ

• Outputs: public parameters pp

The Setup algorithm is executed once by a trusted party.
Creating payment address. The CreateAddress algorithm generates a new pair of payment
address and a nullifier key:

• Inputs: public parameters pp

• Outputs:

– address key pair (addrpk, addrsk)

– nullifier key nk

Each user need to generate at least one address pair. addrpk is public, and addrsk is kept
secretly and used to spend the coin sent to the address.
Creating auditable keys. The CreateAuditableKey algorithm generates a new pair of key
for the audit:

• Inputs: public parameters pp

• Outputs: address key pair (pkau, sk
a
u)

Each user need to generate at least one auditable key pair. pkau is public, and skau is kept
secretly. Depositing coins. The Deposit generates a logical coin and a deposit transaction:

• Inputs:

– public parameters pp

– coin value v ∈ V
– destination address public key addrpk

• Outputs:

– coin c

– deposit transaction txdeposit

The output coin c has value v and coin address addrpk; the output deposit transaction txdeposit
equals (cm, v, ∗), where cm is the coin commitment of c.
Spending coins. The Spend algorithm transfers value from coins on one chain to coins on
another chain.

• Inputs:

6

– public parameters pp

– For each old coins c,

∗ the Merkle root rt

∗ authentication path path from commitment cm(c) to root rt

∗ the address secret key addrsk

– new address ADDR

– public value vpub

– new values vnew1 , vnew2

– new address public keys addrnewpk,1, addr
new
pk,2

– user’s auditable key pair (skau, pk
a
u)

– auditors’ public keys [pkaenc]

• Outputs:

– spend transaction txspend

– new coins cnew1 , cnew2

For each coin c, the Spend algorithm takes as inputs an input coin c and its address secret key
addrsk. The Spend algorithm also takes as inputs the Merkle tree root rt and an authentication
path path of the commitment cm(c). ADDR is the new address where the user sends the public
coin, which could be on a different chain other than c’s. The value vpub specifies the value to
be public transferred. (skau, pk

a
u) and [pkaenc,i] encrypt commitments for the audit. Moreover,

the Spend algorithm also generates two new anonymous coins cnew1 , cnew2 with values vnew1 , vnew2

and recipients address addrnewpk,1, addr
new
pk,2 respectively. vpub + vnew1 + vnew2 should be equal to c’s

value. [msga1 ,msg
a
2 , . . . ,msg

a
n] are encrypted commitments.

The Spend algorithm outputs a spend transaction txspend. The transaction txspend equals (
[(rt, sn)] , cmnew

1 , cmnew
2 , vpub, ADDR, πSPEND, [msga1 ,msg

a
2 , . . . ,msg

a
n]). This transaction will

not reveal the payment address of the old coin.
ZK-rollup. The algorithm Rollup generates a new Merkle tree root and a ZK-rollup transac-
tion:

• Inputs:

– public parameters pp

– rollup size N rollup

– a queue of deposited commitments Qcm

– an old Merkle tree root rtold

– an authentication path path

7

• Outputs:

– a set of deposited commitments [cm]

– ZK-rollup transaction txrollup

The Rollup algorithm takes as inputs an old Merkle root rtold, an authentication path path, a
rollup size N rollup, and a queue of deposited commitments Qcm. The Rollup algorithm outputs
a set of deposite commitments [cm] by dequeuing N rollup commitments from Qcm. It also
generates a new Merkle root rtnew by updating leaves in the old Merkle tree with new leaves
[cm]. There is an authentication path path toward the ancestor node of new leaves, which
is equal to the root of a CRH-based Merkle tree over [cm]. The algorithm then generates
a zk-SNARK πROLLUP to prove that all calculations are valid and correct. The output ZK-
rollup transaction txrollup equals (rtold, rtnew, hash[cm], pathIndices,N

rollup, πROLLUP , ∗), where
hash[cm] is the hash of [cm], pathIndices is the direction selector of path.
Verifying transactions. The algorithm V erifyTransaction checks the validity of a transac-
tion:

• Inputs:

– public parameters pp

– a (spend, deposit or ZK-rollup) transaction tx

– the current source and destination ledgers Lsrc and Ldst

• Outputs: bit b, equals 1 iff the transaction is valid

Deposit, spend, and ZK-rollup transactions must be verified before executed.
Receiving coins.3 The algorithm Receive scans the ledger and retrieves unspent coins paid
to a particular user address:

• Inputs:

– recipient address key pair (addrpk, addrsk)

– recipient nullifier address nk

– the current source and destination ledgers Lsrc and Ldst

• Outputs: set of (unspent) received coins

When a user with address key pair (addrpk, addrsk) wishes to receive payments sent to addrpk
, he uses the Receive algorithm to scan the ledger. For each payment to addrpk appearing in
the ledger, Receive outputs the corresponding coins whose serial numbers do not appear on the
ledger Lsrc,dst. Coins received in this way may be spent by using Spend algorithm.
Audit. The algorithm Audit audits user transactions:

3Taken from [BSCG+14] 3.2 Receiving coins

8

• Inputs:

– Encrypted commitments sharings [msga1 ,msg
a
2 , . . . ,msg

a
n]

– User’s public key pkau

– Auditors’ private keys [skaenc,1, sk
a
enc,2, . . . , sk

a
enc,n]

• Outputs: A set of commitments [cm]

The auditors decrypt each message msgai with the shared secret key skaenc,, pk
a
u and jointly

recover the commitments [cm]. The auditors can recover the transaction link with those com-
mitments.

2.3 Completeness

Completeness of a protocol requires that unspent coins can be spent. Suppose a ledger sampler
S outputs a ledger Lsrc,dst. If c is a coin whose commitment appears in a valid transaction
on Lsrc,dst, but its serial number does not appear in L, then c can be spent using Spend
transaction. Informality, if Spend outputs a txspend transaction that V erifyTransaction
accepts, the coin could be received by the intended recipient. This property is formalized via
an incompleteness experiment INCOMP .

Definition 1 A protocol Π=(Setup, CreateAddress, Deposit, Spend, Rollup,
V erifyTransaction, Receive, Audit) is complete if no polynomial-size ledger sample S wins
INCOMP with more than negligible probability.

2.4 Security

Security of the protocol is characterized by three properties, which we call ledger indistinguisha-
bility, transaction non-malleability, and balance.

Definition 2 A protocol Π=(Setup, CreateAddress, Deposit, Spend, Rollup,
V erifyTransaction, Receive, Audit) is secure if it satisfies ledger indistinguishability, trans-
action non-malleability, and balance.

We describe the informal definition below.
Ledger indistinguishability. This property captures the requirement that the ledger reveals
no new information to the adversary beyond the publicly-revealed information (e.g. plain text
address, coin’s public value).
Transaction non-malleability. This property means no bounded adversary may modify the
data stored in a valid spend transaction.
Balance. This property requires no bounded adversary could spend more coins than what he
received from the deposit transaction.

9

3 Construction of the Protocol

In this section, we describe how to construct the protocol with zk-snark and other cryptography
building blocks at first. Then we give the concrete design.

3.1 Cryptographic building blocks

We introduce the formal notation of the cryptography building blocks we use. λ denotes the
security parameter. This part is similar to [BSCG+14] section 4.1.
Collision-resistant hashing. We use a collision-resistant hash function CRH : {0, 1}∗ →
{0, 1}O(λ).
Pseudorandom functions. We use a pseudorandom function family PRF = {PRFx :
{0, 1}∗ ← {0, 1}O(λ)}x. We then instance three pseudorandom random functions from the same

PRFxs
$←− PRF and add different prefix to the input. Namely, PRF addr

x (z) := PRFx(00||z),
PRF sn

x (z :) = PRFx(01||z), PRF pk
x (z) := PRFx(10||z). Moreover, we require PRF sn to be

collision resistant, i.e. one cannot find (x, z) 6= (x′, z′) s.t. PRF sn
x (z) = PRF sn

x′ (z′).
Statistically-hiding commitments. We use a computationally binding and statistically
hiding commitment scheme COMM . Namely, {COMMx : {0, 1}∗ → {0, 1}O(λ)}x where x
denotes the trapdoor parameter.
One-time strongly-unforgeable digital signatures. We use a digital signature scheme
Sig = (Gsig, Ksig, Ssig, Vsig).

• Gsig(1
λ) → ppsig. Given a security parameters λ, Gsig samples public parameters ppsig

for the signature scheme.

• Ksig(ppsig)→ (pksig, sksig). Given public parameters ppsig, Ksig samples a public key and
a secret key for a single user.

• Ssig(sksig,m) → σ. GIven a secret key sksig and a message m, Ssig signs m to obtain a
signature σ.

• Vsig(pksig,m, σ) → b. Given a public key pksig, message m, and the signature σ, Vsig
outputs b = 1 if validated or otherwise b = 0.

We require Sig to be one-time strong unforgeable against chosen-message attacks (SUF-1CMA
security).
Key-private public-key encryption. We use a public-key encryption scheme Enc = (Genc,
Kenc, Eenc, Denc).

• Genc(1
λ) → ppenc. Given a security parameter λ, Genc samples public parameters ppenc

for the encryption scheme.

• Kenc(ppenc) → (pkenc, skenc). Given public parameters ppenc, Kenc samples a public key
and a secret key for a single user.

10

• Eenc(pkenc,m) → Ct. Given a public key pkenc and a message m, Eenc encrypts m to
obtain a cipher text Ct.

• Denc(skenc, Ct)→ m. Given a secret key skenc and a cipher text Ct, Denc decrypts Ct to
obtain the plain message m (or ⊥ if decryption fails).

The encryption scheme Enc is secure against chosen-ciphertext attack and provides ciphertext
indistinguishability and key indistinguishability.
Elliptic curve integrated encryption scheme. We use an elliptic curve integrated encryp-
tion scheme ECIES = (Gecies, Kecies, KEM,SEC.Enc, SEC.Dec).

• Gecies(1
λ) → ppecies. Given a security parameter λ, Gecies samples public parameters

ppecies for the encryption scheme.

• Kecies(ppecies) → (pka, ska). Given public parameters ppecies, Kenc samples a public key
and a secret key for a single user.

• KEM(pkai , sk
a
j) → ka. Given a public key from user i and a private key from user j,

KEM generates a shared secret key ka.

• SEC.Encka(m)→ msga. Given a secret key ka and a message m, SEC.Enc encrypts m
to obtain a ciphter text msga.

• SEC.Decka(msga) → m. Given a secret key skenc and a cipher text msga, SEC.Dec
decrypts msga to obtain the plain message m (or ⊥ if decryption fails).

Threshold secret sharing. We use a threshold secret sharing scheme SS = (Share,Recover).

• Share(x)→ [x1, x2, . . . , xn]. Given a secret x generates n secret shares [x1, x2, . . . , xn].

• Revocer([xi, xi+1, . . . , xi+t−1]) → x. Given t secret shares [xi, xi+1, . . . , xi+t−1] generates
the secret x.

The secret shareing is t out of n secret sharing, i.e., the secret sharing scheme outputs n shares,
and given any t shares, we can recover the secret. We learn nothing about x given less than t
shares.

3.2 zk-SNARKs for spending coins

We use zk-SNARK to prove a NP statement SPEND. For the definition of zk-SNARK, we
refer to [BCI+13] for a detailed explanation. We first give a informal definition of zk-SNARKs.
Given a field F, a zk-SNARK for F−arithmetic circuit satisfiability is a triple of polynomial-
time algorithm (KeyGen, Prove, V erify):

11

• KeyGen(1λ, C) → (pk, vk). On input a security parameter λ and an F−arithmetic cir-
cuit C, the key generator KeyGen probabilistically samples a proving key pk and a
verification key vk.

• Prove(pk, x, a)→ π. On input a proving key pk and any (x, a) ∈ RC , the prover Prove
outputs a non-interactive proof π for the statement x ∈ LC .

• V erify(vk, x, π) → b. On input a verification key vk, an input x, and a proof π, the
verifier Verify outputs b = 1 if he is convinced that x ∈ LC .

We recall the corresponding spend transaction txspend = ([(rt, sn)] , cmnew
1 , cmnew

2 , vpub,
ADDR, πSPEND,[msga1 ,msg

a
2 , . . . ,msg

a
n]). To spend a coin c, a user u should show that

1. u owns c

2. commitment of c appears on the ledger

3. sn is the calculated correctly as the serial number of c

4. balance is preserved

5. the commitment is well encrypted

, which is formalized as a statement SPEND and proved with zk-SNARK. We then define the
statement as follows.

• Instances is x := ([(rt, sn, h)], vpub, cmnew
1 , cmnew

2 , hsig, pk
a
u, [pk

a
enc], [msg

a]), which specifies
a set [(rt, sn, h)] for each old coin, where rt is the root for a CRH-based Merkle tree, sn
is the serial number, and h is the signature. It also specifies the public value vpub, two
commitments of new coins cmnew

1 , cmnew
2 , and fields hsig used for non-malleability. pkau is

the user’s private key for audit, pkaenc are auditors’ public keys, and [msga] are encrypted
secret sharings of commitments for audit.

• Witnesses are of the form a := ([(path, c, addrsk)], c
new
1 , cnew2 , [cma], skau) where

c = (addrpk, v, ρ, r, s, cm)

addrpk = (apk, pkenc)

cnewi = (addrnewpk,i , v
new
i , ρnewi , rnewi , snewi , cmnew

i)

addrnewpk,i = (anewpk,i , pk
new
enc,i)

Thus, the witness a specifies a authenticated path from root rt to the coin’s commit-
ment, the entirety information of the coin c, the address secret key, secret sharings of
commitments, and the user’s private key for audit.

12

Given a SPEND instance x, a witness a is valid for x if :

1. For any old coin c,

(a) The coin’s commitment cm appears on the ledger, i.e., path is a valid authentication
path for leaf cm in a CRH-based Merkle tree with root rt.

(b) The address secret key ask matches the address public key, i.e., apk = PRF addr
ask

(0).

(c) The nullifier key nk matches the address secret key, i.e., nk = PRF addr
ask,1

(1).

(d) The serial number sn is computed correctly, i.e., sn = PRF sn
nk (ρ).

(e) The coin c is well formatted, i.e., cm = COMMs(COMMr(apk||ρ)||v).

(f) The address secret key ask ties to hsig to h, i.e., h = PRF pk
ask

(hsig).

2. New coins cnew1 and cnew2 are well formatted, i.e.,
cm = COMMsnew

i
(COMMrnew

i
(anewpk,i ||ρnewi)||vnewi).

3. Balance is preserved, i.e.
∑
v = vnew1 + vnew2 + vpub.

4. The commitments are well secret shared, i.e. [cma] = Share(t,n)([cm]).

5. The public audit key match the private audit key, i.e., pkau = skauG.

6. Each commitments share is well encrypted, i.e., msgai = SEC.Encskaupkaenc,i
(cma

i).

3.3 zk-SNARKs for ZK-rollup

We use zk-SNARK to prove a NP statement ROLLUP . In this section, we use the same notions
as in section 3.2. We recall the corresponding ZK-rollup transaction txrollup = (rtold, rtnew,
hash[cm], pathIndices,N

rollup, πROLLUP). To rollup a set of coin commitments [cm], a user u
should show that

1. u knows [cm]

2. u updates the old Merkle tree with [cm]

, which is formalized as a statement ROLLUP and proved with zk-SNARK. We then define
the statements as follows.

• Instances is x := (rtold, rtnew, hash[cm], pathIndices,N
rollup), which specifies a old Merkle

root rtold, a new Merkle root rtnew, a hash of a set of coin commitments hash[cm], the
direction selector of the updated leaf’s authentication path pathIndices.

• Witnesses are of the form a := ([cm], path), and the rollup size N rollup.

13

Thus, the witness a specifies a set of commitments [cm], and the authentication path path.
Given a ROLLUP instance x, let [0] be a set of N rollup zeors, a witness a is valid for x if :

1. hash[cm] is the hash value of [cm].

2. rt[0] is the Merkle root of [0].

3. path is a valid authentication path from rt[0] to rtold, and the corresponding director
selector is pathIndices.

4. rt[cm] is the root of a CRH-based Merkle tree over [cm].

5. path is a valid authentication path from rt[cm] to rtnew, and the corresponding director
selector is pathIndices.

6. The number of updated leaves is correct, e.g., let H be the height of the whole Merkle
tree, |[cm]| = |[0]| and |path|+ log2 |[cm]| − 1 = H.

3.4 Algorithm constructions

In this section, we describe the construction of each algorithm. The intuition is given in 2.1
and 2.2. The building blocks are introduced in 3.1 and 3.2. We give the pseudocode for each
algorithm.
Setup.

• Inputs: security parameter λ

• Outputs: public parameters pp

1. Construct the arithmetic circuit CSPEND for the SPEND statement at security λ.

2. Compute (pkSPEND, vkSPEND) := KeyGen(1λ,CSPEND).

3. Construct the arithmetic circuit CROLLUP for the ROLLUP statement at security λ.

4. Compute (pkROLLUP , vkROLLUP) := KeyGen(1λ,CROLLUP).

5. Compute ppenc := Genc(1
λ).

6. Compute ppsig := Gsig(1
λ).

7. Compute ppecies := Gecies(1
λ).

8. Set pp := (pkSPEND, vkSPEND, pkROLLUP , vkROLLUP , ppenc, ppsig, ppecies) .

9. Output pp.

14

CreateAddress.

• Inputs: public parameters pp

• Outputs:

– address key pair (addrpk, addrsk)

– nullifier key nk

1. Compute (pkenc, skenc) := Kenc(ppenc).

2. Randomly sample a PRF addr seed ask.

3. Compute apk = PRF addr
ask

(0).

4. Compute nk = PRF addr
ask

(1).

5. Set addrpk := (apk, pkenc).

6. Set addrsk := (ask, skenc).

7. Output (addrpk, addrsk) and nk.

Creating auditable keys.

• Inputs: public parameters pp

• Outputs: address key pair (pkau, sk
a
u)

1. Compute (pkau, sk
a
u) := Kecies(ppecies).

2. Outputs (pkau, sk
a
u).

Deposit.

• Inputs:

– public parameters pp

– coin value v ∈ V
– destination address public key addrpk

• Outputs:

– coin c

– deposit transaction txdeposit

15

1. Parse addrpk as (apk, pkenc).

2. Randomly sample a PRF sn seed ρ.

3. Randomly sample two COMM trapdoors r, s.

4. Compute k := COMMr(apk||ρ).

5. Compute cm := COMMs(v||k).

6. Compute Ct := Eenc(pkenc,m), where m := (v, ρ, r, s).

7. Set c := (addrpk, v, ρ, r, s, cm).

8. Set txDeposite := (cm, v, ∗), where ∗ := (k, s, Ct).

9. Output c and txDeposite.

Spend.

• Inputs:

– public parameters pp

– For each coin c,

∗ the Merkle root rt

∗ authentication path path from commitment cm(c) to root rt

∗ the address secret key addrsk

∗ nullifier key nk

– new address ADDR

– public value vpub

– new values vnew1 , vnew2

– new address public keys addrnewpk,1, addr
new
pk,2

– user’s auditable key pair (skau, pk
a
u)

– auditors’ public keys [pkaenc,1, pk
a
enc,2, . . . , pk

a
enc,n]

• Outputs:

– spend transaction txspend

– new coins cnew1 , cnew2

1. For each old coin c:

16

(a) Parse c as (addrpk, v, ρ, r, s, cm).

(b) Parse addrsk as (ask, skenc).

(c) Compute sn := PRF sn
nk (ρ).

(d) Parse addrpk as (apk, pkenc).

2. For each i ∈ 1, 2 :

(a) Parse addrnewpk,i as (anewpk,i , pk
new
enc,i).

(b) Randomly sample a PRF sn seed ρnewi .

(c) Randomly sample two COMM trapdoors rnewi , snewi .

(d) Compute knewi := COMMrnew
i

(anewpk,i ||ρnewi).

(e) Compute cmnew
i := COMMsnew

i
(vnewi ||knewi).

(f) Compute Ctnewi := Eenc(pkenc,m), where m := (vnewi , ρnewi , rnewi , snewi).

(g) Set cnewi := (addrnewpk,i , v
new
i , ρnewi , rnewi , snewi , cmnew

i).

3. Generate (pksig, sksig) := Ksig(ppsig).

4. Compute hsig := CRH(pksig).

5. For each old coin, compute h := PRF pk
ask

(1||hsig).

6. Compute [cma
1, cm

a
2, . . . , cm

a
n] := Share(t,n)([cm]).

7. For each auditor’s public key pkaenc,i, compute kai = KEM(pkaenc,i, sk
a
u).

8. For each commitments share cma
i , compute msgai := SEC.Enckai (cma

i).

9. Set x := ([(rt, sn, h)], vpub, cmnew
1 , cmnew

2 , hsig, pk
a
u, [pk

a
enc,1, pk

a
enc,2, . . . , pk

a
enc,n],

[msga1 ,msg
a
2 , . . . ,msg

a
n]).

10. Set a = ([(path, c, addrsk)], c
new
1 , cnew2 , [cma

1, cm
a
2, . . . , cm

a
n], skau).

11. Compute πSPEND := Prove(pkSPEND, x, a).

12. Set m := (x, πSPEND, ADDR,Ct
new
1 , Ctnew2).

13. Compute σ := Ssig(sksig,m).

14. Set txspend = ([(rt, sn)] , cmnew
1 , cmnew

2 , vpub, ADDR, πSPEND, [msga1 ,msg
a
2 , . . . ,msg

a
n], ∗),

where ∗ := (pksig, [h], σ, Ctnew1 , Ctnew2).

15. Output cnew1 , cnew2 , and txspend.

17

Rollup.

• Inputs:

– public parameters pp

– rollup size N rollup

– a queue of deposited commitments Qcm

– an old Merkle tree root rtold

– an authentication path path

• Outputs:

– a set of deposited commitments [cm]

– ZK-rollup transaction txrollup

1. Set pathIndices as the direction selector of path.

2. Set [cm] as the first N rollup commitments from Qcm.

3. Compute hash[cm] := CRH([cm]).

4. Compute rt[cm] as the root of a CRH-based Merkle tree over [cm].

5. Compute rtnew as follows:

(a) Let Dpath be the length of path.

(b) Let digest = rt[cm].

(c) For each i ∈ {1, . . . , Dpath}, if pathIndices[i] = 0, compute
digest := CRH(digest, path[i]), else digest := CRH(path[i], digest).

(d) Set rtnew := digest

6. Set x := (rtold, rtnew, hash[cm], pathIndices,N
rollup).

7. Set a := ([cm], path).

8. Compute πROLLUP := Prove(pkROLLUP , x, a).

9. Set txrollup := (rtold, rtnew, hash[cm], pathIndices,N
rollup, πROLLUP).

10. Ouput [cm] and txrollup.

VerifyTransaction.

18

• Inputs:

– public parameters pp

– a (spend or deposit) transaction tx

– auditors’ public keys [pkaenc,1, pk
a
enc,2, . . . , pk

a
enc,n]

– the current source and destination ledgers Lsrc and Ldst

• Outputs: bit b, equals 1 iff the transaction is valid

1. If given a deposit transaction tx = txdeposit:

(a) Parse txdeposit as (cm, v, ∗), and ∗ as (k, s).

(b) If v /∈ V, output b := 0.

(c) Set cm′ := COMMs(v||k).

(d) Output b := 1 if cm = cm′, else output b := 0.

2. If given a spend transaction tx = txspend:

(a) Parse txspend as ([(rt, sn)] , cmnew
1 , cmnew

2 , vpub, ADDR, πSPEND, [msga1 ,msg
a
2 , . . . ,

msgan], ∗),
where ∗ := (pksig, [h], πSPEND, σ, Ct

new
1 , Ctnew2)..

(b) If any sn appears on L, output b := 0.

(c) If any Merkle root rt does not appear on L, output b := 0.

(d) Compute hsig := CRH(pksig).

(e) Set x := ([(rt, sn, h)], vpub, cmnew
1 , cmnew

2 , hsig, pk
a
u, [pk

a
enc,1, pk

a
enc,2, . . . , pk

a
enc,n],

[msga1 ,msg
a
2 , . . . ,msg

a
n]).

(f) Set m := (x, πSPEND, ADDR,Ct
new
1 , Ctnew2).

(g) Compute b := Vsig(pksig,m, σ).

(h) Compute b′ := V erify(vkSPEND, x, πSPEND), and output b ∧ b′.

3. If given a ZK-rollup transaction tx = txrollup:

(a) Parse txrollup as (rtold, rtnew, hash[cm], pathIndices,N
rollup, πROLLUP)

(b) If rtold does not appear on L, output b := 0.

(c) If rtnew appears on L, output b := 0.

(d) If N rollup <= 0 or N rollup > |Qcm|, output b := 0.

(e) Set x := (rtold, rtnew, hash[cm], pathIndices,N
rollup).

19

(f) Compute b := V erify(vkROOLUP , x, πROLLUP), and output b

Receive.

• Inputs:

– recipient address key pair (addrpk, addrsk)

– recipient nullifier key nk

– the current source and destination ledgers Lsrc and Ldst

• Outputs: set of (unspent) received coins

1. Parse addrpk as (apk, pkenc).

2. Parse addrsk as (ask, skenc).

3. For each deposit transaction txdeposit on the ledger:

(a) Parse txDeposite as (cm, v, ∗), where ∗ as (k, s, Ct).

(b) Compute m := Denc(skenc, Ct), and parse m as (v, ρ, r, s).

(c) If Denc’s output is not ⊥, verify that:

• cm equals COMMs(v||COMMr(apk||ρ));

• sn := PRF sn
nk does not appear on L.

(d) If both checks succeed, output
c := (addrpk, v, ρ, r, s, cm)

Audit.

• Inputs:

– Encrypted commitments sharings [msga1 ,msg
a
2 , . . . ,msg

a
n]

– User’s public key pkau

– Auditors’ private keys [skaenc,1, sk
a
enc,2, . . . , sk

a
enc,n]

• Outputs: A set of commitments [cm]

1. For each auditors’ private key skaenc,i, compute kai := KEM(pkau, sk
a
enc,i).

2. For each encrypted commitments sharing msgai , compute cma
i := SEC.Deckai (msgai).

3. Compute [cm] := Recover(t,n)(cma
1, cm

a
2, . . . , cm

a
n)

4. Output [cm].

20

3.5 Concrete design

This part may be updated later.
In this section, we describe how we instantiate each building block. Namely, we build CRH,

PRF , COMM from SHA256, Sig from ECDSA, Enc from key-private Elliptic-Curve
Integrated Encryption Scheme.

4 Completeness and Security of the Protocol

In this section, we give a formal definition of the completeness and security of the protocol and
our main theorem. We then prove the theorem.

Theorem 1 The tuple Π=(Setup, CreateAddress, Deposit, Spend, Rollup, V erifyTransaction,
Receive, Audit) is complete and security.

4.1 Completeness

In this part, we formally define the completeness of the protocol.

Definition 3 A protocol Π=(Setup, CreateAddress, Deposit, Spend, Rollup, V erifyTransaction,
Receive, Audit) is complete if for every polynomial-size ledger sample S and sufficiently large
λ, AdvINCOMP

Π,S (λ) < negl(λ), where AdvINCOMP
Π,S (λ) := Pr[INCOMP (Π, S, λ) = 1] is S’s

advantage in the incompleteness experiment.

We now describe the incompleteness experiment INCOMP . This experiment is an inter-
action challenger game between a ledger sampler S and a challenger C. At the beginning, C
samples public parameters pp ← Setup(1λ) and sends to S. S then samples a ledger L and
sends back to C. S also sends a coin c and parameters for a spend transaction, i.e., secret
address key addrsk, public value vnew, and plain text address ADDR. After receiving message,
C checks validations on S’s message.

Firstly, C checks if c is a valid coin, i.e. c is well formatted as defined in section 1.2. Then,
C checks that values are balanced, i.e. v = vnew. C aborts and outputs 0 if any checks fail.

Otherwise, C calculate a spend transaction with following steps:

1. Compute the Merkle tree root rt over all coin commitments in L

2. Compute the authenticated path from c’s commitment cm to root

3. Compute txspend ← Spend(pp, rt, path, addrsk, ADDR, v
new)

Finally, C outputs 1 iff following cases hold:

• txspend 6= (rt, sn, vnew, ADDR, ∗), or

• txspend is not valid, i.e. V erifyTransaction(pp, txspend, Lsrc,dst) outputs 0.

21

4.2 Security

In this section, we formally define the three secure properties: ledger indistinguishability, trans-
action non-malleability, and balance. All properties are defined as interaction games between
a adversary A and a challenger C. We also introduce an oracle OPRO to simulate the behavior
of honest parties. We first describe OPRO as follows.

OPRO initially stores a ledger LPRO, a set of address ADDRPRO, a set of coins COINPRO,
and they all start out empty. OPRO supports different queries, denoted as Q, as described
below:

• Q = (CreateAddress)

– Compute (addrpk, addrsk) := CreateAddress(pp).

– Add the address pair (addrpk, addrsk) to ADDRPRO.

– Output the address public key addrpk

• Q = (Deposit, v, addrpk)

– Compute (c, txmint) := Deposit(pp, v, addrpk)

– Add the coin c to COINPRO

– Add the deposit transaction txdeposit to L

– Output ⊥

• Q = (Spend, idx, addrpk, ADDR, v
new)

– Compute rt, the root of a Merkle tree over all coin commitments in LPRO

– Let cm be the idx-th coin commitment in L, tx be the deposit/spend transaction in
LPRO that contain cm, c be the first coin in COINPRO with coin commitment cm,
(addrpk, addrsk) be the first key pair in ADDRPRO with addrpk being c’s address.
Compute path, the authentication path from cm to rt

– Compute (txspend := Spend(pp, rt, c, addrsk, path,ADDR, v
new))

– Verify that V erifyTransaction(pp, txspend, L) outputs 1.

– Add the spend transaction to L

– Output ⊥.

• Q = (Receive, addrpk)

– Look up (addrpk, addrsk) in ADDRPRO. (If no such key pair is found, abort.)

– Compute (c1, ..., cn)← Receive(pp, (addrsk, addrpk), L
PRO).

– Add c1, ..., cn to COINPRO

22

– Output (cm1, ..., cmn) the corresponding coin commitments.

• Q = (Insert, tx)

– Verify that V erifyTransaction(pp, tx, L) outputs 1. (Else, abort.)

– Add the deposit/spend transaction tx to LPRO

– Run Reveive for all address addrpk in ADDR; this updates the COINPRO with any
coins that might have been sent to honest parities via tx.

– Output ⊥.

4.2.1 Ledger indistinguishability

Definition 4 Let Π=(Setup, CreateAddress, Deposit, Spend, Rollup, V erifyTransaction,
Receive, Audit) be a protocol. We say that Π is L − IND secure if, for every poly(λ)-size
adversary A and sufficiently large λ, AdvL−INDΠ,A (λ) < negl(λ), where AdvL−INDΠ,A (λ) := 2 ·
Pr[L− IND(Π, A, λ) = 1]− 1 is A’s advantage in the L− IND experiment.

We now describe the ledger indistinguishability experiment L − IND. This experiment is an
interaction challenger game between an adversary A and a challenger C.
Setup. At the beginning, C samples a random bit b ∈ (0, 1) and public parameters pp ←
Setup(1λ), and sends pp to A. C then initializes two oracle OPRO

0 and OPRO
1 using pp.

Main part. Let Lleft be the current ledger in OPRO
b and Lright be the current ledger in OPRO

1−b .
C provides (Lleft, Lright) to A; A then sends two queries

Q,Q′ ∈ CreateAddress,Deposit, Spend,Receive, Insert

to C, while Q and Q′ should be public consistent. If query type is Insert, C forwards Q to
OPRO
b , and Q′ to OPRO

1−b . Otherwise, C first check if Q and Q′ are public consistent and then
forwards Q to OPRO

0 and Q′ to OPRO
1 . Let a0 and a1 be the two oracle answer, C then sends

(ab, a1−b) to A.
A and C may repeat the Main part several times. At the end of the experiment, A sends

C a guess bit b′ ∈ (0, 1). C outputs 1 if b = b′, or 0 otherwise.
Public consistency Two queries Q and Q′ are public consistent iff Q and Q′ are the same
type. Furthermore, they are well formatted. and their public information are equal.

4.2.2 Transaction non-malleability

Definition 5 Let Π=(Setup, CreateAddress, Deposit, Spend, Rollup, V erifyTransaction,
Receive, Audit) be a protocol. We say that Π is TR − NM secure if, for every poly(λ)-
size adversary A and sufficiently large λ, AdvTR−NMΠ,A (λ) < negl(λ), where AdvTR−NMΠ,A (λ) :=
2 · Pr[TR−NM(Π, A, λ) = 1]− 1 is A’s advantage in the TR−NM experiment.

23

We now describe the transaction non-malleability experiment TR − NM . This experiment is
an interaction challenger game between an adversary A and a challenger C. At the beginning,
C samples pp ← Setup(1λ), and sends pp to A. C then initializes an oracle OPROusing pp. A
may send several queries to OPRO. At the end of the experiment, A sends a spend transaction
tx′ to A. Let T be the set of all spend transaction generated by OPRO. C outputs 1 iff there
exists a tx ∈ T s.t. (1) tx′ 6= tx; (2) V erifyTransaction(pp, tx′, L) = 1; and (3) a serial number
revealed in tx′ is also revealed in tx.

4.2.3 Balance

Definition 6 Let Π=(Setup, CreateAddress, Deposit, Spend, Rollup, V erifyTransaction,
Receive, Audit) be a protocol. We say that Π is BAL secure if, for every poly(λ)-size adversary
A and sufficiently large λ, AdvBALΠ,A (λ) < negl(λ), where AdvBALΠ,A (λ) := 2 · Pr[BAL(Π, A, λ) =
1]− 1 is A’s advantage in the BAL experiment.

We now describe the balance experiment BAL. This experiment is an interaction challenger
game between an adversary A and a challenger C. At the beginning, C samples pp← Setup(1λ),
and sends pp to A. C then initializes an oracle OPROusing pp. A may send several queries to
OPRO. At the end of the experiment, A sends C a set of coin C. C computes the following
quantities.

• vunspent, the total spendable coins in C.

• vdeposit, the total value of all coins deposited by A.

• vADDRPRO→A, the total value of payment received by A from addresses in ADDRPRO.

• vspent, the total value of public outputs placed by A on the ledger.

C outputs 1 iff vunspent + vspent > vdeposit + vADDRPRO→A.

4.3 Proof of Theorem 1

In this section, we will sketch the proof of the theorem 1. Similar to [BSCG+14], we also omit
the proof of completeness. We then prove the security with three separate proofs.

4.3.1 Ledger indistinguishability.

We prove this property by hybrid experiments from the ledger indistinguishability experiment
L − IND to a simulation SIML−IND. In the simulation, the adversary A interacts with a
challenger C as in the experiment, except that all answers are computed independently of the
bit b. We then proof that the simulation is indistinguishable from the real experiments.

24

The simulation SIML−IND works as follows. The setup stage is similar to the L − IND
experiment. However, the zk-SNARK is initialized with a simulation SIM zk. Then, the chal-
lenger C answers different queries as follows.

• CreateAddress. C behaves as in L − IND, except that C replaces apk in addrpk with
a random string. Then, C stores addrsk in a table and returns addrpk to A.

• Deposit. C behaves as in L− IND, except that C computes k as COMMr(τ ||ρ) where
τ is a random string.

• Spend. C computes rt as the accumulation of all the valid coin commitments on Li.
Then, C samples a uniformly random snold, which is the serial number of the coin c. Let
h be a random string and compute all remain value as in Spend algorithm. C computes
the proof πSPEND from the simulation SIM zk.

• Receive. The answer is unique to the L− IND experiment.

• Insert. The answer is unique to the L− IND experiment.

In each case, the answer to A is independent from the bit b. When A guesses the bit b, A can
only sample a random bit b′, i.e., A’s advantage is 0. Next, we will prove that SIML−IND is
indistinguishable from L− IND.

Sketch of Proof: We now describe a sequential of hybrid experiments

(L− IND, SIML−IND1 , SIML−IND2 , SIML−IND)

. For each intermediate experiments, we modify the experiment and show that it is distinguish-
able from the previous experiment.

• SIML−IND1 : In experiment SIML−IND1 , we simulate the zk-SNARK. For each spend
transaction, C computes the proof πSPEND from a simulation SIM zk. Since zk-SNARK
is perfect zero knowledge, the simulation proof πSPEND should be indistinguishable from
a real proof. Hence AdvSIM

L−IND1 = 0.

• SIML−IND2 : The experiment SIML−IND2 modifies SIML−IND1 by replacing all PRF
results with random values. More precisely, we modify SIML−IND1 so that :

– each time A issues a CreateAddress query, the value apk in addrpk is substituted
with a random string of the same length; and

– each time A issues a Spend query query, the serial number snold and the signature
h are substituted with random strings fo the same length.

We claim that |AdvSIML−IND2 −AdvSIML−IND1 | is negligible. We omit the proof and refer
to [BSCG+14] Lemma D.2.

25

• SIML−IND : We already describe the experiment SIML−IND above. More precisely,
we modify SIML−IND2 so that each time A issues a Deposit query, the commitment
cm in txdeposit is substituted with a commitment to a random input. We claim that

|AdvSIML−IND −AdvSIML−IND2 | is negligible. We omit the proof and refer to [BSCG+14]
Lemma D.3.

By summing over A’s advantages in the hybrid experiments, we can bound A’s advantage in
L−IND by AdvL−INDΠ,A (λ) ≤ AdvSIM

L−IND1 +|AdvSIML−IND2−AdvSIML−IND1 |+|AdvSIML−IND−
AdvSIM

L−IND2 |, which is negligible in λ.

4.3.2 Transaction non-malleability.

Define ε := AdvTR−NMΠ,A (λ). Let τ be the set of spend transactions generated by OPRO in
response to Spend queries. Set h′sig := CRH(pk′sig) corresponding to tx′. Let pksig be the
corresponding public key in tx and set hsig := CRH(pksig). Let QCA = {ask,1, ..., ask,qCA

} be
the set of internal address keys created by C in response to A’s CreateAddress queries. Let
QS = {pksig,1, ..., pksig,qS} be the set of signature public keys created by C in response to A’s
Spend queries. Then, we decompose the event in which A wins into the following four disjoint
events.

• EV ENTsig : A wins the TR − NM experiment, and there is pk′′sig ∈ QS such that
pk′sig = pk′′sig.

• EV ENTcol : A wins, and above event does not occur, and there is pk′′sig ∈ QS such that
h′sig = CRH(pk′′sig).

• EV ENTmac : A wins, and above two events do not occur, and h′ = PRF pk
asig

(hsig) and
asig ∈ QCA.

• EV ENTkey : A wins, and above three events do not occur, and h′ 6= PRF pk
asig

(hsig) and
asig ∈ QCA.

Clearly, ε = Pr[EV ENTsig] + Pr[EV ENTcol] + Pr[EV ENTmac] + Pr[EV ENTkey]. Then, we
bound the probability of each event and show that they are all negligible to λ.

Bound the probability of EV ENTsig: Define ε1 := Pr[EV ENTsig]. We proof the
statement that ε1 is negligible in λ by contradiction. More precisely, if ε1 is not negligible, A
can forge the signature with more than negligible probability, which breaks the SUF-1CMA
security.

Let σ′ be the signature in tx′, and σ′′ be the signature in the first spend transaction in
tx′′ ∈ τ that contains pk′′sig. Let m′ be everything in tx′ other than σ′. Let m′′ be everything
in tx′′ other than σ′′. Observe that whenever tx′ 6= tx′′ we also have (m′, σ′) 6= (m′′, σ′′). We
first show that tx′ = tx′′ with negligible probability by contradiction. Since, by the definition
of TR−NM , tx′ and tx share the same serial number. Suppose tx′ = tx′′ then tx and tx′′ also

26

share the same serial number, which is bound by the negligible probability that τ contains two
transactions that share the same serial number.

Next, we describe an algorithm B, which uses A as a subroutine, that wins the SUF-1CMA
game against Sig with ε1/qP . We omit the detail and refer [BSCG+14] section D.2. Because
Sig is SUF-1CMA, ε1 must be negligible in λ.

Bound the probability of EV ENTcol: Define ε2 := Pr[EV ENTcol]. When EV ENTcol
occurs, A find a collision CRH(pk′sig) = CRH(pk′′sig). Because CRH is collision resistant, ε2
must be negligible in λ.

Bound the probability of EV ENTmac: Define ε3 := Pr[EV ENTmac]. We state that
when EV ENTmac occurs, A could distinguish between the PRF with a truly random. We
omit the detail and refer to [BSCG+14] section D.2. Therefore, ε3 must be negligible in λ.

Bound the probability of EV ENTkey: Define ε4 := Pr[EV ENTkey]. If EV ENTkey
occurs, there exists an algorithm B s.t. B finds collisions for PRF sn. We omit the detail and
refer to [BSCG+14] section D.2.

4.3.3 Balance.

To spend more coins than he owns, A may insert a transaction on the ledger. We now modify
the experiment in a way that does not affect A’s view. For each zk-SNARK instance x =
(rt, sn, vnew, hsig, h) in a spend transaction, C computes a witness a = (path, c, addrsk). C may
do so with a knowledge extractor. Afterwards, C obtains an augmented ledger (L,~a) where ~a
is a list of witness a. Note that (L,~a) is a list of matched pairs (txspend, a) where txspend is a
spend transaction and a is the corresponding witness. Define ε := AdvBALΠ,A (λ). We then define
the balance property respected to the modified BAL experiment. We say an augmented ledger
balanced if the following holds:

1. Each (txspend, a) in (L,~a) contains openings of a valid coin commitment cm, and cm is a
output coin commitment of a deposit transaction preceding txspend on L.

2. No two (txspend, a) and (tx′spend, a
′) in (L,~a) contain openings of the same coin commit-

ment.

3. Each (txspend, a) in (L,~a) contains opening of cm to value v, and v = vnew.

4. For each (txspend, a) in (L,~a), if cm is also the output of a deposit transaction, both
transaction have the same value v.

5. For each (txspend, a) in (L,~a), where txspend is inserted by A, if cm is the output of a
previous transaction tx′, the public address is not in ADDR. Recall that ADDR is the
set of address pairs created by A’s CreateAddress queries.

We then prove that A cannot violate each case with more than negligible probability.
A violates Condition 1: By the construction of OPRO, A cannot violate the condition.

27

A violates Condition 2: If A violates Condition 2, L contains two spend transactions
txspend and tx′spend with the same cm. Since both transactions are valid, they must contain
different serial numbers, namely sn = sn′. However, if both transactions spend cm but product
different serial number, then the corresponding witness a, a′ contain different openings of cm.
This violates the binding property of the commitment scheme COMM .

A violates Condition 3: By the construction of the NP statement SPEND, this must
hold. Otherwise, the zk-SNARK is violated.

A violates Condition 4: If A violates Condition 4, L contains a deposit transaction
txdeposit and a spend transaction txspend s.t. both transactions have the same commitment cm
but open cm to different values. This violates the binding property of the commitment scheme
COMM .

A violates Condition 5: If A violates Condition 5, L contains an inserted spend trans-
action txspend s.t. txspend spends a coin deposited by a previous deposit transaction txdeposit.
Notably, txdeposit’s public address addrpk = (apk, pkenc) lies in ADDR, and the witness asso-
ciated to txdeposit contains ask s.t. apk = PRF addr

ask
(0). One can construct a new adversary B

that, by using A as a subroutine, distinguish PRF from a random function.

References

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Ostrovsky.
Succinct non-interactive arguments via linear interactive proofs. In Theory of
Cryptography Conference, pages 315–333. Springer, 2013.

[BSCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474,
2014.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme.
In Matt Franklin, editor, Advances in Cryptology – CRYPTO 2004, pages 426–442,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

28

	Introduction
	Motivation
	Protocol Overview
	Architecture Overview

	Definition of the Protocol
	Data Structures
	Algorithms
	Completeness
	Security

	Construction of the Protocol
	Cryptographic building blocks
	zk-SNARKs for spending coins
	zk-SNARKs for ZK-rollup
	Algorithm constructions
	Concrete design

	Completeness and Security of the Protocol
	Completeness
	Security
	Ledger indistinguishability
	Transaction non-malleability
	Balance

	Proof of Theorem 1
	Ledger indistinguishability.
	Transaction non-malleability.
	Balance.

