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Abstract

Blockchain exposes all users’ transaction data to the public, including account balances, asset holdings,
trading history, etc. Such data exposure leads to potential security risks that restrict blockchain from broader
adoption. Although some existing projects focus on single-chain confidential payment, no existing cross-chain
system supports zero-knowledge transactions yet, which is incompatible with regulations such as GDPR. Also,
current confidential payment systems require users to pay high extra fees. However, an anonymous protocol
encrypting all transaction data raises concerns about malicious and illegal activities since the protocol is difficult
to audit. We need to balance anonymous and auditability in blockchain.

We propose an auditable and affordable protocol for cross-chain and single-chain transactions. This protocol
leverages zero-knowledge proofs to encrypt transactions and perform validation without disclosing sensitive users’
data. To meet regulations, each auditor from an auditing committee will have an encrypted secret share of the
transaction data. Auditors may view the zero-knowledge transaction data only if a majority of the committee
agrees to decrypt the data. We employ a ZK-rollup scheme by processing multiple transactions in batches,
which reduces zero-knowledge transaction costs to 90% lower compared with solutions without ZK-rollup. We
implemented the proposed scheme using Zokrates and Solidity and evaluated the protocol on the Ethereum test
network, and the total one-to-one zero-knowledge transactions cost only 5 seconds. We also proved the security
of the protocol utilizing the standard real/ideal world paradigm.

1 Introduction

Blockchain exposes all user transaction data to the public, including account balances, asset holdings, trade activity,
etc., due to its transparency and traceability features. Such data exposure creates possible security problems,
which prevent blockchain from being adopted more widely. Additionally, the blockchain ecosystem is built on
interoperability (connectivity) across various blockchains and blockchain applications. Hundreds of cross-chain
bridges have formed, serving as a conduit for users to transfer assets from one chain to another, accumulating
billions of dollars in inter-chain trading volumes. However, no cross-chain bridge currently in existence has allowed
zero-knowledge transactions that safeguard users’ trade histories.

Although there exist single chain zero-knowledge transaction solutions, they are not particularly user-friendly.
In the market, single chain coin mixing systems have already been tested. The user experience of such systems,
however, is extremely restricted because customers not only bear high transaction charges but also run into dif-
ficulties when transferring assets between chains. In order to conduct secret cross-chain transactions using such
solutions, a user must first use single-chain coin mixers on the few supported chains before using a bridge to com-
plete the cross-chain operation. Zero-knowledge transactions typically have expensive gas fee. Users must pay an
additional gas fee if they activate zero-knowledge features. Users are facing difficulties to using zero-knowledge
services because of the very high gas fee for cross-chain zero-knowledge transactions.

The Office of Foreign Assets Control (OFAC) of the U.S. Department of the Treasury sanctioned Tornado Cash
on August 8th, 2022, citing it as ”a substantial danger to national security.” Regulators’ primary worries may
stem from the lack of visibility of suspicious transaction flows, or the source and destination of possible ”laundered
money,” as well as from their inability to distinguish between the assets of criminal actors and users who have
reasonable expectations of zero-knowledge. There are, nevertheless, a lot of good reasons why someone would
desire to employ zero-knowledge features. For instance, a worker who receives cryptocurrency payments from their
employer might not want their employer to be aware of all of their financial information. Investors in NFTs might
not want to be the subject of robbery or harassment in the future. When donating money, donors sometimes desire
to keep their identity a secret.

We offers a zero-knowledge proof based protocol solution to all cross chain bridges, which breaks the linkability
between a user’s deposit on a source chain and withdrawal on a destination chain. This protocol has an easy-
to-plug-in feature that can be integrated into almost all major inter-chain bridges in the blockchain ecosystem.
Moreover, this protocol offers a zero-knowledge proof based scaling solution to reduce such gas fees to an affordable
level, i.e., ZK-rollup. To balance the right to protect users without illicit purpose and the compliance request of
global regulators, we designed a decentralized auditing system for onchain zero-knowledge transactions.

1.1 Motivation

In a cross-chain or single-chain transaction, the source blockchain network will transfer coins to the destination
blockchain network. In such a protocol, the sender and receiver addresses are in plain text, and therefore it could be
possible to track the transaction graph. Many research works show that this setting cannot provide zero-knowledge
[BBB+18, PBF+18]. To address this issue, we employ a similar solution as in Zcash [BSCG+14, HBHW16]: the
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transaction is encrypted with the public key of the receiver, and this receiver can then find the transaction and
withdraw the coin. However, Zcash is a fork of Bitcoin [Nak08] and maintains a layer-1 blockchain. The network
lacks integration with other blockchain networks, e.g., Ethereum [W+14], BSC [Bin20], and Polygon [KNA21],
and Zcash can support neither single-chain nor cross-chain transactions across those popular chains. Also, the
transaction size in Zcash could be ten times higher than in Bitcoin, which hurts its scalability. The encrypted
transaction could provide zero-knowledge; however, it could be abused for criminal purposes. Zcash has viewing
keys that allow external viewers to track transactions, but this scheme can only disclose incoming transactions.
In particular, auditors cannot view the sender’s address and outgoing transactions from an address. We need to
provide more complete audit features in which all in and out transactions are auditable.
Our contribution. We designed a confidential protocol for blockchain transactions supporting popular chains. It
is noteworthy that the sender and receiver may be on the same chain, i.e., the user sends a single-chain transaction,
and the source chain and the destination chain are on the same chain. Alternatively, the user can send a cross-
chain transaction, and the source chain and the destination chain are on different chains. The protocol supports
JoinSplit and allows internal transfers. We also employed the ZK-rollups scheme to increase the throughput of
our protocol. We built a confidential protocol while making it auditable for auditors, in fact the protocol will not
disclose users’ transaction data unless a large enough partition of the auditors agrees so.

1.2 Protocol Overview

Suppose a user u on Block A want to send a coin valued v to u1 on Block B, where v belongs to some default
values V. Let PRF addr

x (·), PRF sn
x (·) and PRF pk

x (·) denote three pseudorandom functions for a seed x. Each user
ui generates an address key pair (addrpk,i, addrsk,i), where addrpk,i = (apk,i, pkenc,i) and addrsk,i = (ask,i, skenc,i),
and a nullifier key nk. apk,i is generated as PRF addr

ask
(0). nk is generated as PRF addr

ask
(1).(pkenc,i, skenc,i) are

key-private encryption scheme. Here, we outline the protocol in three steps:

(1) u generates randomness r, s, and ρ, where ρ is the coin’s serial number randomness. Let COMM de-
note a commit scheme and Eenc denote a public-key encryption scheme. u commits the serial number
in two steps (1) k = COMMr(apk,1||ρ) (2) cm := COMMs(v||k). Then, u computes the ciphertext
Ct = Eenc(pkenc, v, ρ, r, s). The tuple (v, k, s, cm,Ct) is the new transaction txdeposit. The ledger will
keep a CRH(collision-resistant hash)-based Merkle tree CMList of all committed serial numbers (cm). If
cm is already in the ledger, the transaction will be rejected. Logically, the coin u sends to u1 is defined as
c := (apk,1, v, ρ, r, s, cm).

(2) u1 can scan over the public ledger and find the transaction txdeposit. The user then decrypts Ct and gets
(v, ρ, r, s).

(3) When u1 wants to withdraw the coin (or more than one received coins), u1 will generate two new coins
cnew1 cnew2 and a zk-SNARK proof πWITHDRAW over the following statements:
For each old coins c, given the Merkle root rt, serial number sn, u1 knows c and address secret key ask,1 s.t.

• c is well-formatted.

• The address secret key matches the public key, i.e., apk,1 = PRF addr
ask,1

(0).

• The nullifier key matches the address secret key, i.e., nk = PRF addr
ask,1

(1).

• The serial number is computed correctly, i.e., sn = PRF sn
nk (ρ).

• The coin commitment cm appears as a leaf of Merkle-tree with root rt.

• New coins cnew1 and cnew2 are well formatted.

• vnew1 + vnew2 + vpub =
∑

v.

The withdraw transaction txwithdraw := ([(rt, sn)], cmnew
1 , cmnew

2 , vpub, ADDR, πWITHDRAW) is appended in
the ledger, where ADDR is the plain text address, and [(rt, sn)] is a set of the Merkle root and the serial
number for each old coins. The relayer will verify the proof and check if all sn do not appear on the ledger.
It will send the public coin to ADDR and new coins cnew1 and cnew2 to anonymous addresses if validated.
Furthermore, we employ a MAC scheme to prevent malleability attacks. When withdrawing a coin, the user
samples a key pair (pksig, sksig) and uses sksig to sign every value associated with the txwithdraw transaction.
The user also computes hsig := CRH(pksig) and h := PRF pk

ask
(hsig), which acts like a MAC to sign the secret

address key. The user then modifies the statement to prove that h is computed correctly. The signature σ
along with pksig are included in the txwithdraw transaction. The overview process is illustrated in Figure 1.
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Relayer Relayer Relayer
SRC Chain

DST Chain

(1)

(2) (3)

(1) u1 locks his coin
(2) u2 finds the transaction
(3) u2 withdraws the coin

Figure 1: Solution overview when u1 on the source chain sends coins to u2 on the destination chain. u1 submits
a deposit transaction and locks the coins. u2 then scans over the network and finds the deposit transaction. u2

submits a withdrawal transaction to spend the coins.

As cryptocurrency becomes popular, blockchain protocols must also adapt their auditing capacity. Recent
enforcement actions against Tornado Cash1 and Bittrex2 alert cryptocurrency exchanges to the risk of failing to
implement effective regulations. As U.S. Treasury stated, exchanges should understand the identity and location
of the user. To meet regulations, when u1 withdraws coins, the user has to disclose the commitments of old coins
[c] to auditors, and the auditors could then track the transaction link. Suppose there are n auditors, and to audit
users’ transactions there should be more than t auditors agree. The user divides commitments [cm] into n pieces
[cma

1 , cm
a
2 , . . . , cm

a
n] using (t, n)−secret sharing, in which one can recover the commitments only if the user has more

than t pieces. The user then encrypts each share with an auditor’s public key and sends it to the corresponding
auditor. The auditors can decrypt the received messages and jointly recover the commitments. Let Share(t,n)

denotes a (t, n)-secret sharing scheme and Recover(t,n) denotes the recovering scheme. (pkaenc,i, sk
a
enc,i) are auditors’

elliptic curve key pair. To provide a zero knowledge friendly implementation, we leverage an elliptic curve hybrid
encryption scheme [KD04]. Namely, the protocol generates a shared secret key ka in a symmetric-key encryption
scheme (SEC.Enck, SEC.Deck) from a public key scheme. Let (pkau, sk

a
u) denote an elliptic curve key pair for

audit purpose. We then set kai = skau · pkaenc,i = skaenc,i · pkau and the encrypted message msgai = SEC.Encka
i
(cma

i ).
Without loss of generality, we assume there are three auditors. The user then proofs following statements along
with other statements in πWITHDRAW:
Let G be the generator in the elliptic curve. Given commitments [cm]. encrypted messages msga1 ,msga2 ,msga3 and
public keys pkau, pk

a
enc,1, pk

a
enc,2, pk

a
enc,3, I know [cma

1 , cm
a
2 , cm

a
3 ] and skau s.t.

• The commitments are well secret shared, i.e., [cma
1 , cm

a
2 , cm

a
3 ] = Share(t,n)([cm]).

• The public key match the private key, i.e., pkau = skauG.

• Each commitments share is well encrypted, i.e., for each i ∈ {1, 2, 3}, msgai = SEC.Encska
upk

a
enc,i

(cma
i ).

1.3 Architecture Overview

In this section, we introduce the proposed architecture as illustrated in Figure 2. We described the overview
protocols and algorithms for depositing and withdrawing coins in Section 1.2, and then we implement the algorithms,
naming Mystiko, in two phases: Mystiko Deposit and Mystiko Withdraw. During the Mystiko Deposit
phase, a user sends coins from a source chain to a destination chain via a bridge, and Mystiko locks those coins
on the source chain. It is noteworthy that Mystiko employs the bridge as a data bridge instead of an asset bridge,
i.e., the bridge actively syncs invokes and events only. Moreover, all notes are encrypted. Only the user with the
corresponding private key may decrypt it; therefore, only this user could generate the valid zero-knowledge proof
and then withdraw the coin.

1https://home.treasury.gov/news/press-releases/jy0916
2https://home.treasury.gov/news/press-releases/jy1006
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Figure 2: Architecture overview of the implementation. Transactions from the source chain are synced to the
destination chain via a cross-chain bridge. The system enables deposit, withdraw, and ZK-rollup by a set of
smart contracts.

If the receiver wants to withdraw the coins, the user then generates a withdraw transaction off-chain and verifies
it on-chain. As mentioned in Section 1.2, Mystiko keeps a Merkle tree for all deposited coins and updates the tree
when adding a new coin. This operation could be expensive if it is executed on-chain. In Mystiko, this problem has
been solved by means of ZK-rollups. Namely, a ZK-rollup miner will pull on-chain deposits locally and calculate
a Merkle tree root. The miner then generates a zero-knowledge proof: the Merkle tree root is correct and validated.
The user then sends the proof with the root to the contract, and if the proof is validated, we update the Merkle
tree root.

1.4 Paper organization

This paper is organized as follows. Section 2 provides background on the blockchain, zero-knowledge proofs, and
previous works. We define the protocol in section 3 and describe construction in section 4. Section 5 provides
benchmarks for our protocol implementation. We formally prove completeness and security in section 6. Section 7
summarize our contributions and future works.

2 Background

2.1 Blockchain

A blockchain is a distributed ledger shared among a computer network. The first generation of blockchain is
Bitcoin [Nak08], which employs a blockchain to record peer-to-peer transactions. Ethereum [W+14] introduced
smart contracts into the blockchain. Smart contracts are programs on the block that self-execute when certain
conditions meet, which enables decentralized applications on blockchains. As the blockchain grows, all nodes in the
network have to agree one the current state and append the same block. To ensure the consistent among nodes,
the blockchain defines a set of protocol called consensus algorithms.
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2.2 Zero-Knowledge Proof

Goldwasser, Micali, and Rackoff [GMR85] introduced the notion of zero-knowledge proof in 1985, which allows a
prover to prove the truth of a statement without revealing anything but the statement is true. For example, the
prover may prove that two graphs are isomorphic without revealing anything, especially the isomorphism between
the two graphs. Blum, Feldman, and Micali [BFM88] introduced the non-interactive zero-knowledge proof, in
which the proof is publicly verifiable without interaction with the prover. However, the early zero-knowledge
proof protocols are inefficient or redundant in terms of proof size; therefore, those protocols are impractical. The
zk-SNARK algorithm [Gro10, BCI+13], which stands for Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge, is one of the first practical protocols. In zk-SNARK, the proof size is succinct and independent of the
complexity of the statement. In this paper, we employed the Groth16 [Gro16, GM17] construction of zk-SNARK,
which provides the best concrete efficient and shortest proof size.

2.3 Previous Works

Zerocash is the first zero-knowledge blockchain using zero-knowledge proof. Zexe [BCG+20], Zkay [SBG+19], and
ZeeStar [SBBV22] extend the zero-knowledge framework to arbitrary smart contracts using Groth16 construction.
Zexe requires users to compute smart contracts off-chain and then submit a zero-knowledge proof for correctness,
but Zexe provides no development tools. Zkay and its following work, Zeestar, proposed a language for zero-
knowledge smart contracts. However, those protocols are extremely compute-intensive, e.g., they require many
cores (Zkay, 12 cores) or high RAM (Zexe, 256 GB).

Monero [NM16] is another zero-knowledge blockchain based on Bitcoin, but unlike Zerocash, Monero leverages
ring signature and range-proofs [BBB+18]. Range-proofs are special forms of zero-knowledge proofs which prove a
value is within a range. For example, in Monero, users must prove that the inputs and outputs in their transactions
are within valid range to prevent overflow. Zether [BAZB20] is a similar work to Monero but atop Ethereum. Both
Monero and Zether are inherently limited in scalability since the size of range-proofs is not constant. Notably, all
previously mentioned works provide no auditability and suffer from potential illicit uses.

ZkLedger [NVV18] and Fabzk [KDJL+19] support auditability using homomorphic commitments and non-
interactive zero-knowledge proof. However, these systems focus on the cross-organization transactions, and the
performance degrades as the user number increases, which makes them impractical for supporting popular chains.
ZEBRA [RPX+22] is a zero-knowledge blockchain for anonymous credential scheme supporting auditability. Fi-
nally, Azeroth proposed zero-knowledge transactions with auditing, but the framwork does not support cross-chain
transactions.

3 Definition of the Protocol

We introduce the notion of the anonymous protocol. This section is similar to the notation of Zerocash [BSCG+14].

3.1 Data Structures

We describe the data structures used in the protocol.
Ledger This protocol is based on a blockchain network. There are two ledgers: the source chain’s ledger Lsrc

and the destination chain’s ledger Ldst. At any given time T , all users have access to L
{src,dst}
T . Both ledgers are

append-only.
Public parameters3. A list of public parameters pp is available to all users in the system. These are generated
by a trusted party at the “start of time” and are used by the system’s algorithms.
Address4. Each user generates at least one address key pair (addrpk, addrsk) and a nullifier key nk. The public
key addrpk is published and enables others to direct payments to the user. The secret key addrsk is used to receive
payments sent to addrpk. The nullifier key nk is used to generate serial numbers of receiving coins. A user may
generate any number of address key pairs.
Auditable keys. Each user generates at least one audit key pair (pkau, sk

a
u). The public key pkau is published and

enables auditors to generate the shared secret key with their own private keys. The private key skau is used to
generate the shared secret key with the auditors’ public keys.

3Taken from [BSCG+14] 3.1 Data structures Public parameters
4Taken from [BSCG+14] 3.1 Data structures Addresses
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Coin. A coin is a data object c. Across this paper, c refers to a logical coin since a user will not mint a new coin
when transferring the coin. A coin is associated with commitment, value, serial number, address.

• commitment, denoted cm(c): a string that appears on the ledger once c is deposited.

• value, denoted v(c): the denomination of c. We limit the value within some pre-defined default values, denoted
V, i.e., v ∈ V.

• serial number, denoted sn(c): a unique string associated with c, used to prevent double withdrawing.

• address, denoted addrpk(c): an address public key, representing who owns c.

Transaction. We introduce three new types of transactions.

• Deposit transactions. A deposit transaction txdeposit is a tuple (cm, v, ∗), where cm is the coin commitment,
v is the coin value, and ∗ are other information, e.g., randomness. The transaction txdeposit records that a
user deposits a coin with commitment cm and value v, which could be withdrawn on other chains.

• Withdraw transactions. A withdraw transaction txwithdraw is a tuple ( [(rt, sn)] , cmnew
1 , cmnew

2 , vpub, ADDR, πWITHDRAW,[msga1 ,msga2 , . . . ,msgan], ∗),
where [(rt, sn)] is a set of the Merkle root and the serial number for each old coins, cmnew

1 , cmnew
2 are com-

mitments of new coins, vpub is the public coin value, ADDR is a plain text address, [msga1 ,msga2 , . . . ,msgan]
are encrypted messages for the audit, and ∗ denotes other information. The transaction txwithdraw records
that a user withdraws some coins c and sends a coin to a public address and two new coins to anonymous
addresses. It also contains messages that auditors may decrypt and then track the transaction.

• ZK-rollup transactions. A ZK-rollup transaction txrollup is a tuple (rtold, rtnew, hash[cm],

pathIndices,Nrollup, πROLLUP, ∗), where rtold is the old Merkle tree root, rtnew is the new Merkle tree root
after updating with coin commitments [cm], hash[cm] is the hash of [cm], pathIndices is the direction selector

of the authentication path of [cm], Nrollup is the number of commitments been rolluped, and ∗ denotes other
information. The transaction txrollup records that a user update the commitment tree with a set of deposited
coin commitments.

Committed of deposit coins and serial numbers of withdraw coins. For any given time T

• CMListT denotes the list of all commitments appearing in deposit transactions in Lsrc
T .

• SNListT denotes the list of all serial numbers appearing in withdraw transactions in Lsrc
T

Merkle tree over commitments. For any given time T , TreeT denotes a Merkle tree over CMListT and rtT is
the root. PathT (cm) denotes the path function which outputs the authentication path given a coin commitment
cm.
Queue of commitments. For any given time T , Qcm

T denotes a queue of commitments waiting for rollup.

3.2 Algorithms

The protocol Π is a tuple of polynomial-time algorithms
(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup,
VerifyTransaction, Receive, Audit) with the following syntax and semantics.
System setup. The algorithm Setup generates a list of public parameters:

• Inputs: security parameter λ

• Outputs: public parameters pp

The Setup algorithm is executed once by a trusted party.
Creating payment address. The CreateAddress algorithm generates a new pair of payment address and a nullifier
key:

• Inputs: public parameters pp

• Outputs:

– address key pair (addrpk, addrsk)
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– nullifier key nk

Each user needs to generate at least one address pair. addrpk is public, and addrsk is kept secretly and used to
withdraw the coin sent to the address.
Creating audit keys. The CreateAuditKey algorithm generates a new pair of key for the audit:

• Inputs: public parameters pp

• Outputs: address key pair (pkau, sk
a
u)

Each user needs to generate at least one audit key pair. pkau is public, and skau is kept secretly.
Depositing coins. The Deposit generates a logical coin and a deposit transaction:

• Inputs:

– public parameters pp

– coin value v ∈ V
– destination address public key addrpk

• Outputs:

– coin c

– deposit transaction txdeposit

The output coin c has value v and coin address addrpk; the output deposit transaction txdeposit equals (cm, v, ∗),
where cm is the coin commitment of c.
Withdrawing coins. The Withdraw algorithm transfers value from coins on one chain to coins on another chain.

• Inputs:

– public parameters pp

– For each old coins c,

∗ the Merkle root rt

∗ authentication path path from commitment cm(c) to root rt

∗ the address secret key addrsk

– new address ADDR

– public value vpub

– new values vnew1 , vnew2

– new address public keys addrnewpk,1, addr
new
pk,2

– user’s audit key pair (skau, pk
a
u)

– auditors’ public keys [pkaenc]

• Outputs:

– withdraw transaction txwithdraw

– new coins cnew1 , cnew2

For each coin c, the Withdraw algorithm takes as inputs an coin c and its address secret key addrsk. The Withdraw
algorithm also takes as inputs the Merkle tree root rt and an authentication path path of the commitment cm(c).
ADDR is the new address where the user sends the public coin, which could be on a different chain other than
c’s. The value vpub specifies the value to be public transferred. (skau, pk

a
u) and [pkaenc,i] encrypt commitments

for the audit. Moreover, the Withdraw algorithm also generates two new anonymous coins cnew1 , cnew2 with values
vnew1 , vnew2 and recipients address addrnewpk,1, addr

new
pk,2 respectively. vpub + vnew1 + vnew2 should be equal to c’s value.

[msga1 ,msga2 , . . . ,msgan] are encrypted commitments.
The Withdraw algorithm outputs a withdraw transaction txwithdraw. The transaction txwithdraw equals (

[(rt, sn)] , cmnew
1 , cmnew

2 , vpub, ADDR, πWITHDRAW, [msga1 ,msga2 , . . . ,msgan] ). This transaction will not reveal the
payment address of the old coin.
ZK-rollup. The algorithm Rollup generates a new Merkle tree root and a ZK-rollup transaction:
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• Inputs:

– public parameters pp

– rollup size Nrollup

– a queue of deposited commitments Qcm

– an old Merkle tree root rtold

– an authentication path path

• Outputs:

– a set of deposited commitments [cm]

– ZK-rollup transaction txrollup

The Rollup algorithm takes as inputs an old Merkle root rtold, an authentication path path, a rollup size Nrollup,
and a queue of deposited commitments Qcm. The Rollup algorithm outputs a set of deposite commitments [cm]
by dequeuing Nrollup commitments from Qcm. It also generates a new Merkle root rtnew by updating leaves in
the old Merkle tree with new leaves [cm]. There is an authentication path path toward the ancestor node of
new leaves, which is equal to the root of a CRH-based Merkle tree over [cm]. The algorithm then generates a
zk-SNARK πROLLUP to prove that all calculations are valid and correct. The output ZK-rollup transaction txrollup

equals (rtold, rtnew, hash[cm], pathIndices,N
rollup, πROLLUP, ∗), where hash[cm] is the hash of [cm], pathIndices is

the direction selector of path.
Verifying transactions. The algorithm VerifyTransaction checks the validity of a transaction:

• Inputs:

– public parameters pp

– a (withdraw, deposit or ZK-rollup) transaction tx

– the current source and destination ledgers Lsrc and Ldst

• Outputs: bit B, equals 1 iff the transaction is valid

Deposit, withdraw, and ZK-rollup transactions must be verified before being executed.
Receiving coins.5 The algorithm Receive scans the ledger and retrieves unwithdrawn coins paid to a particular
user address:

• Inputs:

– recipient address key pair (addrpk, addrsk)

– recipient nullifier address nk

– the current source and destination ledgers Lsrc and Ldst

• Outputs: set of (unwithdrawn) received coins

When a user with address key pair (addrpk, addrsk) wishes to receive payments sent to addrpk , the user uses the
Receive algorithm to scan the ledger. For each payment to addrpk appearing in the ledger, Receive outputs the
corresponding coins whose serial numbers do not appear on the ledger Lsrc,dst. Coins received in this way may be
withdrawn by using Withdraw algorithm.
Audit. The algorithm Audit audits user transactions:

• Inputs:

– Encrypted commitments sharings [msga1 ,msga2 , . . . ,msgan]

– User’s public key pkau

– Auditors’ private keys [skaenc,1, sk
a
enc,2, . . . , sk

a
enc,n]

• Outputs: A set of commitments [cm]

The auditors decrypt each message msgai with the shared secret key skaenc,, pk
a
u and jointly recover the commitments

[cm]. The auditors can recover the transaction link with those commitments.

5Taken from [BSCG+14] 3.2 Receiving coins
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3.3 Completeness

Completeness of a protocol requires that unwithdrawn coins can be withdrawn. Suppose a ledger sampler S outputs
a ledger Lsrc,dst. If c is a coin whose commitment appears in a valid transaction on Lsrc,dst, but its serial number
does not appear in L, then c can be withdrawn using Withdraw transaction. Informally, if Withdraw outputs a
txwithdraw transaction that VerifyTransaction accepts, the coin could be received by the intended recipient. This
property is formalized via an incompleteness experiment INCOMP .

Definition 1 A protocol Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup,
VerifyTransaction, Receive, Audit) is complete if no polynomial-size ledger sample S wins INCOMP with more than
negligible probability.

3.4 Security

Security of the protocol is characterized by four properties, which we call ledger indistinguishability, transaction
non-malleability, balance, and auditability.

Definition 2 A protocol Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup, VerifyTransaction,
Receive, Audit) is secure if it satisfies ledger indistinguishability, transaction non-malleability, balance, and au-
ditability.

We describe the informal definition below.
Ledger indistinguishability. This property captures the requirement that the ledger reveals no new information
to the adversary beyond the publicly-revealed information (e.g. plain text address, coin’s public value).
Transaction non-malleability. This property means no bounded adversary may modify the data stored in a
valid withdraw transaction.
Balance. This property requires no bounded adversary could withdraw more coins than what the user received
from the deposit transaction.
Auditability. This property requires the auditor can always monitor the confidential data of any user.

4 Construction of the Protocol

In this section, we describe how to construct the protocol with zk-snark and other cryptography building blocks at
first. Then we give the concrete design.

4.1 Cryptographic building blocks

We introduce the formal notation of the cryptography building blocks we use. λ denotes the security parameter.
This part is similar to [BSCG+14] section 4.1.
Collision-resistant hashing. We use a collision-resistant hash function CRH : {0, 1}∗ → {0, 1}O(λ).
Pseudorandom functions. We use a pseudorandom function family PRF = {PRFx : {0, 1}∗ ← {0, 1}O(λ)}x. We

then instance three pseudorandom functions from the same PRFxs
$←− PRF and add different prefix to the input.

Namely, PRF addr
x (z) := PRFx(00||z),

PRF sn
x (z :) = PRFx(01||z), PRF pk

x (z) := PRFx(10||z). Moreover, we require PRF sn to be collision resistant, i.e.
one cannot find (x, z) ̸= (x′, z′) s.t. PRF sn

x (z) = PRF sn
x′ (z′).

Statistically-hiding commitments. We use a computationally binding and statistically hiding commitment
scheme COMM . Namely, {COMMx : {0, 1}∗ → {0, 1}O(λ)}x where x denotes the trapdoor parameter.
One-time strongly-unforgeable digital signatures. We use a digital signature scheme Sig = (Gsig,Ksig, Ssig, Vsig).

• Gsig(1
λ) → ppsig. Given a security parameters λ, Gsig samples public parameters ppsig for the signature

scheme.

• Ksig(ppsig)→ (pksig, sksig). Given public parameters ppsig, Ksig samples a public key and a secret key for a
single user.

• Ssig(sksig,m)→ σ. Given a secret key sksig and a message m, Ssig signs m to obtain a signature σ.

• Vsig(pksig,m, σ) → b. Given a public key pksig, message m, and the signature σ, Vsig outputs b = 1 if
validated or otherwise b = 0.
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We require Sig to be one-time strong unforgeable against chosen-message attacks (SUF-1CMA security).
Key-private public-key encryption. We use a public-key encryption scheme Enc = (Genc, Kenc, Eenc, Denc).

• Genc(1
λ) → ppenc. Given a security parameter λ, Genc samples public parameters ppenc for the encryption

scheme.

• Kenc(ppenc)→ (pkenc, skenc). Given public parameters ppenc, Kenc samples a public key and a secret key for
a single user.

• Eenc(pkenc,m) → Ct. Given a public key pkenc and a message m, Eenc encrypts m to obtain a cipher text
Ct.

• Denc(skenc, Ct) → m. Given a secret key skenc and a cipher text Ct, Denc decrypts Ct to obtain the plain
message m (or ⊥ if decryption fails).

The encryption scheme Enc is secure against chosen-ciphertext attack and provides ciphertext indistinguishability
IND-CCA and key indistinguishability IK-CCA.
Elliptic curve integrated encryption scheme. We use an elliptic curve integrated encryption scheme ECIES =
(Gecies,Kecies,KEM,SEC.Enc, SEC.Dec).

• Gecies(1
λ)→ ppecies. Given a security parameter λ, Gecies samples public parameters ppecies for the encryp-

tion scheme.

• Kecies(ppecies)→ (pka, ska). Given public parameters ppecies, Kenc samples a public key and a secret key for
a single user.

• KEM(pkai , sk
a
j ) → ka. Given a public key from user i and a private key from user j, KEM generates a

shared secret key ka.

• SEC.Encka(m)→ msga. Given a secret key ka and a message m, SEC.Enc encrypts m to obtain a ciphter
text msga.

• SEC.Decka(msga) → m. Given a secret key skenc and a cipher text msga, SEC.Dec decrypts msga to
obtain the plain message m (or ⊥ if decryption fails).

The encryption scheme ECIES is secure against chosen-ciphertext attack and provides ciphertext indistinguisha-
bility IND-CCA and key indistinguishability IK-CCA.
Threshold secret sharing. We use a threshold secret sharing scheme SS = (Share,Recover).

• Share(x)→ [x1, x2, . . . , xn]. Given a secret x generates n secret shares [x1, x2, . . . , xn].

• Revocer([xi, xi+1, . . . , xi+t−1])→ x. Given t secret shares [xi, xi+1, . . . , xi+t−1] generates the secret x.

The secret sharing is a perfect t out of n secret sharing PER-SS, i.e., the secret sharing scheme outputs n shares,
and given any t shares, we can recover the secret. We learn nothing about x given less than t shares.

4.2 zk-SNARKs for withdrawing coins

We use zk-SNARK to prove a NP statement WITHDRAW . For the definition of zk-SNARK, we refer to [BCI+13]
for a detailed explanation. We first give an informal definition of zk-SNARKs. Given a field F, a zk-SNARK for
F−arithmetic circuit satisfiability is a triple of polynomial-time algorithm (KeyGen, P rove, V erify):

• KeyGen(1λ, C)→ (pk, vk). On input a security parameter λ and an F−arithmetic circuit C, the key generator
KeyGen probabilistically samples a proving key pk and a verification key vk.

• Prove(pk, x, a) → π. On input a proving key pk and any (x, a) ∈ RC , the prover Prove outputs a non-
interactive proof π for the statement x ∈ LC .

• V erify(vk, x, π)→ b. On input a verification key vk, an input x, and a proof π, the verifier Verify outputs
b = 1 if the verifier is convinced that x ∈ LC .

We recall the corresponding withdraw transaction txwithdraw = ( [(rt, sn)] , cmnew
1 , cmnew

2 , vpub,
ADDR, πWITHDRAW,[msga1 ,msga2 , . . . ,msgan]). To withdraw a coin c, a user u should show that
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1. u owns c

2. commitment of c appears on the ledger

3. sn is the calculated correctly as the serial number of c

4. balance is preserved

5. the commitment is well encrypted

which is formalized as a statement WITHDRAW and proved with zk-SNARK. We then define the statement as
follows.

• Instances is x := ([(rt, sn, h)], vpub, cmnew
1 , cmnew

2 , hsig, pk
a
u, [pk

a
enc], [msga]), which specifies a set [(rt, sn, h)]

for each old coin, where rt is the root for a CRH-based Merkle tree, sn is the serial number, and h is the
signature. It also specifies the public value vpub, two commitments of new coins cmnew

1 , cmnew
2 , and fields hsig

used for non-malleability. pkau is the user’s private key for audit, pkaenc are auditors’ public keys, and [msga]
are encrypted secret sharings of commitments for audit.

• Witnesses are of the form a := ([(path, c, addrsk)], c
new
1 , cnew2 , [cma], skau) where

c = (addrpk, v, ρ, r, s, cm)

addrpk = (apk, pkenc)

cnewi = (addrnewpk,i , v
new
i , ρnewi , rnewi , snewi , cmnew

i )

addrnewpk,i = (anewpk,i , pk
new
enc,i)

Thus, the witness a specifies a authenticated path from root rt to the coin’s commitment, the entirety
information of the coin c, the address secret key, secret sharings of commitments, and the user’s private key
for audit.

Given a WITHDRAW instance x, a witness a is valid for x if :

1. For any old coin c,

(a) The coin’s commitment cm appears on the ledger, i.e., path is a valid authentication path for leaf cm in
a CRH-based Merkle tree with root rt.

(b) The address secret key ask matches the address public key, i.e., apk = PRF addr
ask

(0).

(c) The nullifier key nk matches the address secret key, i.e., nk = PRF addr
ask,1

(1).

(d) The serial number sn is computed correctly, i.e., sn = PRF sn
nk (ρ).

(e) The coin c is well formatted, i.e., cm = COMMs(COMMr(apk||ρ)||v).
(f) The address secret key ask ties to hsig to h, i.e., h = PRF pk

ask
(hsig).

2. New coins cnew1 and cnew2 are well formatted, i.e.,
cm = COMMsnew

i
(COMMrnew

i
(anewpk,i ||ρnewi )||vnewi ).

3. Balance is preserved, i.e.
∑

v = vnew1 + vnew2 + vpub.

4. The commitments are well secret shared, i.e. [cma] = Share(t,n)([cm]).

5. The public audit key match the private audit key, i.e., pkau = skauG.

6. Each commitments share is well encrypted, i.e., msgai = SEC.Encska
upk

a
enc,i

(cma
i ).
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4.3 zk-SNARKs for ZK-rollup

We use zk-SNARK to prove a NP statement ROLLUP . In this section, we use the same notions as in section
4.2. We recall the corresponding ZK-rollup transaction txrollup = (rtold, rtnew, hash[cm], pathIndices, N

rollup,
πROLLUP). To rollup a set of coin commitments [cm], a user u should show that

1. u knows [cm]

2. u updates the old Merkle tree with [cm]

which is formalized as a statement ROLLUP and proved with zk-SNARK. We then define the statements as follows.

• Instances is x := (rtold, rtnew, hash[cm], pathIndices,N
rollup), which specifies an old Merkle root rtold, a new

Merkle root rtnew, a hash of a set of coin commitments hash[cm], the direction selector of the updated leaf’s
authentication path pathIndices.

• Witnesses are of the form a := ([cm], path), and the rollup size Nrollup.

Thus, the witness a specifies a set of commitments [cm], and the authentication path path.
Given a ROLLUP instance x, let [0] be a set of Nrollup zeors, a witness a is valid for x if :

1. hash[cm] is the hash value of [cm].

2. rt[0] is the Merkle root of [0].

3. path is a valid authentication path from rt[0] to rtold, and the corresponding director selector is pathIndices.

4. rt[cm] is the root of a CRH-based Merkle tree over [cm].

5. path is a valid authentication path from rt[cm] to rtnew, and the corresponding director selector is pathIndices.

6. The number of updated leaves is correct, e.g., let H be the height of the whole Merkle tree, |[cm]| = |[0]| and
|path|+ log2 |[cm]| − 1 = H.

4.4 Algorithm constructions

In this section, we describe the construction of each algorithm. The intuition is given in 3.1 and 3.2. The building
blocks are introduced in 4.1 and 4.2. We give the pseudocode for each algorithm in Figure 3 and Figure 4.

4.5 Concrete design

In this section, we describe how we instantiate each building block. Namely, we build CRH, PRF , COMM
from Poseidon [GKR+21], Merkle tree from Keccak[BDPVA13], Sig from ECDSA, Enc from key-private
Elliptic-Curve Integrated Encryption Scheme.

5 Implementation and Experiment

We implemented our protocol on Ethereum and evaluated its performance on various system environments described
in Table 1. This protocol employs the Groth16 proof system and implements with ZoKrates [ET18], a toolbox for
zkSNARKs on Ethereum. We developed smart contracts with the Solidity language. There are three main phases
in the system: withdraw, deposit, and ZK-rollup. During each phase, the protocol submits a transaction to the
blockchain and executes a corresponding smart contract. During withdraw and deposit phases, the protocol also
computes SNARKs for withdrawing coins and ZK-rollup.

Machine OS CPU RAM
Computer1 Ubuntu Intel(R) Xeon(R) E-2234 CPU @ 3.6 GHz 8 core 16G
Computer2 macOS Intel(R) Core(R) i7 CPU @ 2.6 GHz 6 core 16G

Table 1: System specification of the different testing environments.
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Setup.
• Inputs: security parameter λ
• Outputs: public parameters pp

1. Construct the arithmetic circuit CWITHDRAW for the
WITHDRAW statement at security λ.

2. Compute (pkWITHDRAW, vkWITHDRAW) := KeyGen(1λ, CWITHDRAW).
3. Construct the arithmetic circuit CROLLUP for the ROLLUP state-

ment at security λ.
4. Compute (pkROLLUP, vkROLLUP) := KeyGen(1λ, CROLLUP).

5. Compute ppenc := Genc(1
λ).

6. Compute ppsig := Gsig(1
λ).

7. Compute ppecies := Gecies(1
λ).

8. Set pp := (pkWITHDRAW, vkWITHDRAW, pkROLLUP, vkROLLUP, ppenc,
ppsig,ppecies).

9. Output pp.

CreateAddress
• Inputs: public parameters pp
• Outputs:

– address key pair (addrpk, addrsk)
– nullifier key nk

1. Compute (pkenc, skenc) := Kenc(ppenc).

2. Randomly sample a PRFaddr seed ask.
3. Compute apk = PRFaddr

ask
(0).

4. Compute nk = PRFaddr
ask

(1).

5. Set addrpk := (apk, pkenc).
6. Set addrsk := (ask, skenc).
7. Output (addrpk, addrsk) and nk.

CreateAuditKey
• Inputs: public parameters pp
• Outputs: address key pair (pka

u, sk
a
u)

1. Compute (pka
u, sk

a
u) := Kecies(ppecies).

2. Outputs (pka
u, sk

a
u).

Deposit
• Inputs:

– public parameters pp
– coin value v ∈ V
– destination address public key addrpk

• Outputs:

– coin c
– deposit transaction txdeposit

1. Parse addrpk as (apk, pkenc).
2. Randomly sample a PRF sn seed ρ.
3. Randomly sample two COMM trapdoors r, s.
4. Compute k := COMMr(apk||ρ).
5. Compute cm := COMMs(v||k).
6. Compute Ct := Eenc(pkenc,m), where m := (v, ρ, r, s).
7. Set c := (addrpk, v, ρ, r, s, cm).
8. Set txdeposit := (cm, v, ∗), where ∗ := (k, s, Ct).
9. Output c and txdeposit.

Audit.
• Inputs:

– Encrypted commitments sharings [msga
1 , . . . ,msga

n]
– User’s public key pka

u
– Auditors’ private keys [ska

enc,1, sk
a
enc,2, . . . , sk

a
enc,n]

• Outputs: A set of commitments [cm]

1. For each auditors’ private key ska
enc,i, compute ka

i :=

KEM(pka
u, sk

a
enc,i).

2. For each encrypted commitments sharing msga
i , compute cma

i :=
SEC.Decka

i
(msga

i ).

3. Compute [cm] := Recover(t,n)(cma
1 , cm

a
2 , . . . , cm

a
n)

4. Output [cm].

Withdraw.
• Inputs:

– public parameters pp
– For each coin c,

∗ the Merkle root rt

∗ authentication path path from commitment cm(c) to
root rt

∗ the address secret key addrsk

∗ nullifier key nk

– new address ADDR
– public value vpub

– new values vnew
1 , vnew

2
– new address public keys addrnew

pk,1, addr
new
pk,2

– user’s audit key pair (ska
u, pk

a
u)

– auditors’ public keys pka
enc,1, pk

a
enc,2, pk

a
enc,3

• Outputs:

– withdraw transaction txwithdraw

– new coins cnew
1 , cnew

2

1. For each old coin c:

(a) Parse c as (addrpk, v, ρ, r, s, cm).
(b) Parse addrsk as (ask, skenc).
(c) Compute sn := PRF sn

nk (ρ).
(d) Parse addrpk as (apk, pkenc).

2. For each i ∈ 1, 2 :

(a) Parse addrnew
pk,i as (anew

pk,i , pk
new
enc,i).

(b) Randomly sample a PRF sn seed ρnew
i .

(c) Randomly sample two COMM trapdoors rnew
i , snew

i .
(d) Compute knew

i := COMMrnew
i

(anew
pk,i ||ρ

new
i ).

(e) Compute cmnew
i := COMMsnew

i
(vnew

i ||knew
i ).

(f) Compute Ctnew
i := Eenc(pkenc,m), where m :=

(vnew
i , ρnew

i , rnew
i , snew

i ).
(g) Set cnew

i := (addrnew
pk,i , v

new
i , ρnew

i , rnew
i , snew

i , cmnew
i ).

3. Generate (pksig, sksig) := Ksig(ppsig).
4. Compute hsig := CRH(pksig).

5. For each old coin, compute h := PRFpk
ask

(i||hsig).

6. Compute [cma
1 , cm

a
2 , . . . , cm

a
n] := Share(t,n)([cm]).

7. For each auditor’s public key pka
enc,i, compute ka

i =

KEM(pka
enc,i, sk

a
u).

8. For each commitments share cma
i , compute msga

i :=
SEC.Encka

i
(cma

i ).

9. Set x := ([(rt, sn, h)], vpub, cmnew
1 , cmnew

2 , hsig,
pka

u, pk
a
enc,1, pk

a
enc,2, pk

a
enc,3, [msga

1 ,msga
2 , . . . ,msga

n]).

10. Set a = ([(path, c, addrsk)], c
new
1 , cnew

2 , cma
1 , cm

a
2 , cm

a
3 , sk

a
u).

11. Compute πWITHDRAW := Prove(pkWITHDRAW, x, a).
12. Set m := (x, πWITHDRAW, ADDR,Ctnew

1 , Ctnew
2 ).

13. Compute σ := Ssig(sksig,m).

14. Set txwithdraw = ([(rt, sn)], cmnew
1 , cmnew

2 , vpub, ADDR,
πWITHDRAW,msga

1 ,msga
2 ,msga

3 , ∗), where ∗ :=
(pksig, [h], σ, Ctnew

1 , Ctnew
2 ).

15. Output cnew
1 , cnew

2 , and txwithdraw.

Figure 3: Construction of Setup,CreateAddress,CreateAuditKey,Deposit,Audit,Withdraw algorithms.
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Rollup.
• Inputs:

– public parameters pp
– rollup size Nrollup

– a queue of deposited commitments Qcm

– an old Merkle tree root rtold

– an authentication path path
• Outputs:

– a set of deposited commitments [cm]
– ZK-rollup transaction txrollup

1. Set pathIndices as the direction selector of path.
2. Set [cm] as the first Nrollup commitments from Qcm.
3. Compute hash[cm] := CRH([cm]).

4. Compute rt[cm] as the root of a CRH-based Merkle tree over
[cm].

5. Compute rtnew as follows:

(a) Let Dpath be the length of path.

(b) Let digest = rt[cm].

(c) For each i ∈ {1, . . . , Dpath}, if pathIndices[i] = 0, com-
pute
digest := CRH(digest, path[i]), else digest :=
CRH(path[i], digest).

(d) Set rtnew := digest

6. Set x := (rtold, rtnew, hash[cm], pathIndices,N
rollup).

7. Set a := ([cm], path).
8. Compute πROLLUP := Prove(pkROLLUP, x, a).

9. Set txrollup := (rtold, rtnew, hash[cm], pathIndices,N
rollup, πROLLUP).

10. Ouput [cm] and txrollup.

Receive.
• Inputs:

– recipient address key pair (addrpk, addrsk)
– recipient nullifier key nk
– the current source and destination ledgers Lsrc and Ldst

• Outputs: set of (unwithdrawn) received coins

1. Parse addrpk as (apk, pkenc).
2. Parse addrsk as (ask, skenc).
3. For each deposit transaction txdeposit on the ledger:

(a) Parse txdeposit as (cm, v, ∗), where ∗ as (k, s, Ct).
(b) Compute m := Denc(skenc, Ct), and parse m as

(v, ρ, r, s).
(c) If Denc’s output is not ⊥, verify that:

• cm equals COMMs(v||COMMr(apk||ρ));
• sn := PRF sn

nk does not appear on L.
(d) If both checks succeed, output

c := (addrpk, v, ρ, r, s, cm)

VerifyTransaction.

• Inputs:

– public parameters pp

– a (withdraw or deposit) transaction tx

– auditors’ public keys [pka
enc,1, pk

a
enc,2, . . . , pk

a
enc,n]

– the current source and destination ledgers Lsrc and Ldst

• Outputs: bit b, equals 1 iff the transaction is valid

1. If given a deposit transaction tx = txdeposit:

(a) Parse txdeposit as (cm, v, ∗), and ∗ as (k, s).
(b) If v /∈ V, output b := 0.
(c) Set cm′ := COMMs(v||k).
(d) Output b := 1 if cm = cm′, else output b := 0.

2. If given a withdraw transaction tx = txwithdraw:

(a) Parse txwithdraw as ( [(rt, sn)]

, cmnew
1 , cmnew

2 , vpub, ADDR, πWITHDRAW,
[msga

1 ,msga
2 , . . . , msga

n], ∗),
where ∗ := (pksig, [h], πWITHDRAW, σ, Ctnew

1 , Ctnew
2 )..

(b) If any sn appears on L, output b := 0.
(c) If any Merkle root rt does not appear on L, output b := 0.
(d) Compute hsig := CRH(pksig).

(e) Set x := ([(rt, sn, h)], vpub, cmnew
1 , cmnew

2 , hsig,
pka

u, [pk
a
enc,1, pk

a
enc,2, . . . , pk

a
enc,n],

[msga
1 ,msga

2 , . . . ,msga
n]).

(f) Set m := (x, πWITHDRAW, ADDR,Ctnew
1 , Ctnew

2 ).
(g) Compute b := Vsig(pksig,m, σ).
(h) Compute b′ := V erify(vkWITHDRAW, x, πWITHDRAW), and

output b ∧ b′.
3. If given a ZK-rollup transaction tx = txrollup:

(a) Parse txrollup as (rtold, rtnew, hash[cm], pathIndices,

Nrollup, πROLLUP)

(b) If rtold does not appear on L, output b := 0.
(c) If rtnew appears on L, output b := 0.

(d) If Nrollup <= 0 or Nrollup > |Qcm|, output b := 0.

(e) Set x := (rtold, rtnew, hash[cm], pathIndices,N
rollup).

(f) Compute b := V erify(vkROOLUP , x, πROLLUP), and out-
put b

Figure 4: Construction of Rollup,Receive,VerifyTransaction algorithms.
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5.1 Deposit

During the deposit experiment, a user submitted a deposit transaction txdeposit to the blockchain. The blockchain
then locked the token and synced the transaction to the destination chain. The experiment result shows in Table
2.

Transaction size(byte) Gas amount (Ethereum)
deposit 484 208,506

Table 2: Deposit experiment results.

5.2 Withdraw

During the withdraw experiment, a user computed a witness and generated the ZK-snark proof as described in
Section 4.2. We evaluated the running time (in ms) of each stage in different environments as shown in Table 1.
The user then submitted a withdraw transaction txwithdraw to the blockchain. The obtained results are reported
in Table 3. We evaluated different withdraw types denoted as n ∗ m where n is the number of input coins and
m counts the output coins. For example, 1 ∗ 0 means the user withdrew a coin to a public address, and 1 ∗ 1
means the user withdrew a coin from the source chain and created a new coin on the destination chain. For each
type of withdraw, we evaluated the transaction forty times and averaged the measured time. We also recorded the
transaction (TX) size in bytes and the required gas amount on Ethereum.

Type ZK-snark Computer1(ms) Computer2(ms) TX size Gas

withdraw

1 ∗ 0
compute-witness 238 317

1,284 527,105generate-proof 5,140 5,652
verify 5 6

1 ∗ 1
compute-witness 292 450

1,636 618,247generate-proof 5,195 6,175
verify 5 6

1 ∗ 2
compute-witness 298 439

1,988 713,191generate-proof 5,284 6,289
verify 5 6

2 ∗ 0
compute-witness 562 829

1,508 629,992generate-proof 9,779 11,685
verify 5 7

2 ∗ 1
compute-witness 566 842

1,860 716,400generate-proof 9,892 11,789
verify 6 7

2 ∗ 2
compute-witness 571 839

2,212 811,270generate-proof 9,975 11882
verify 6 7

Table 3: Withdraw experiment results.

5.3 ZK-rollup

We evaluated ZK-rollup using a similar approach to the withdraw experiment. The experiment results are reported
in Table 4. The Rollup requires the number of input commitments in the power of 2; therefore, we evaluated the
protocol with 2, 4, 8, and 16 commitments. For each type of ZK-rollup, we evaluated the transaction forty times
and averaged the measured time.

5.4 Discussion

We showed the performance and gas consumption of our protocol. Generation of zero-knowledge proofs is the
most time-consuming process, which takes up to 30 seconds when ZK-rollup 16 commitments on Computer2. The
performance is practically acceptable considering other zero-knowledge payment protocols take much more time,
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Type ZK-snark Computer1(ms) Computer2(ms) TX size Gas

ZK-rollup

2
compute-witness 595 755

356 327,014generate-proof 6,360 7,604
verify 3 5

4
compute-witness 601 988

356 331,636generate-proof 6,545 8,314
verify 3 5

8
compute-witness 1,142 1,876

356 340,805generate-proof 11,057 14,396
verify 4 5

16
compute-witness 2,223 3,670

356 410,186generate-proof 20,700 27,023
verify 4 5

Table 4: Zk-rollup experiment results.

e.g., 75 seconds for Zcash 6 and 120 seconds for Monero 7. A one-to-one zero-knowledge transfer (1 ∗ 1) averagely
consumes 643,884 (618247 + 410186/16) gas when ZK-rollup 16 commitments. As a comparison, a zero-knowledge
transfer in Azeroth [?], an auditable zero-knowledge protocol, consumes 1,555,957 gas. If we issue a 2∗2 transaction,
the average one-to-one zero-knowledge transfer can further optimize to 413,146 (811270/2 + 410186/16) gas.

6 Completeness and Security of the Protocol

In this section, we give a formal definition of the completeness and security of the protocol and our main theorem.
We then prove the theorem.

Theorem 1 The tuple Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup,
VerifyTransaction, Receive, Audit) is complete and secure.

6.1 Completeness

In this part, we formally define the completeness of the protocol.

Definition 3 A protocol Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup, VerifyTransaction,
Receive, Audit) is complete if for every polynomial-size ledger sample S and sufficiently large λ, AdvINCOMP

Π,S (λ) <

negl(λ), where AdvINCOMP
Π,S (λ) := Pr[INCOMP (Π, S, λ) = 1] is S’s advantage in the incompleteness experiment.

We now describe the incompleteness experiment INCOMP . This experiment is an interaction challenger game
between a ledger sampler S and a challenger C. At the beginning, C samples public parameters pp ← Setup(1λ)
and sends to S. S then samples a ledger L and sends back to C. C also sends a set of coins [c] and parameters for
a withdraw transaction, i.e., secret address key addrsk, public value vpub, new coin values vnew1 , vnew2 , new address
public keys addrnewpk,1, addr

new
pk,2, user’s audit key pair (skau, pk

a
u), auditors’ public keys [pkaenc], and plain text address

ADDR. Assume, without loss of generality, C sends two coins c1, c2, and there are three auditors. After receiving
message, C checks validations on S’s message.

Firstly, C checks if c1, c2 are valid coins, i.e. they are well formatted as defined in section 1.2. Then, C checks
that values are balanced, i.e. v1 + v2 = vnew1 + vnew2 + vpub. C aborts and outputs 0 if any checks fail.

Otherwise, C calculate a withdraw transaction with following steps:

1. Compute the Merkle tree root rt over all coin commitments in L

2. Compute authenticated paths from c1’s commitment cm1 and c2’s commitment cm2 to rt

3. Compute txwithdraw ←Withdraw(pp, rt, path1, path2, addrsk,1, addrsk,2, v
pub,

vnew1 , vnew2 , addrnewpk,1, addr
new
pk,2, (sk

a
u, pk

a
u), pk

a
enc,1, pk

a
enc,2, pk

a
enc,3, ADDR)

Finally, C outputs 1 iff following cases hold:

6https://z.cash/support/faq/
7https://www.monero.how/how-long-do-monero-transactions-take
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• txwithdraw ̸= (rt, sn1, sn2, cm
new
1 , cmnew

2 , vpub, ADDR, πWITHDRAW,msga1 ,msga2 ,msga3 , ∗), or

• txwithdraw is not valid, i.e. VerifyTransaction(pp, txwithdraw, Lsrc,dst) outputs 0.

6.2 Security

In this section, we formally define the three secure properties: ledger indistinguishability, transaction non-malleability,
and balance. All properties are defined as interaction games between an adversary A and a challenger C. We also
introduce an oracle OPRO to simulate the behavior of honest parties. We first describe OPRO as follows.
OPRO initially stores a ledger LPRO, a set of address ADDRPRO, a set of user’s audit key AUDPRO, a set

of coins COINPRO, and they all start out empty. OPRO supports different queries, denoted as Q, as described
below:

• Q = (CreateAddress)

– Compute (addrpk, addrsk) := CreateAddress(pp).

– Add the address pair (addrpk, addrsk) to ADDRPRO.

– Output the address public key addrpk

• Q = (CreateAuditKey)

– Compute (pkau, sk
a
u) := CreateAuditKey(pp).

– Add the address pair (pkau, sk
a
u) to AUDPRO.

– Output the address public key pkau

• Q = (Deposit, v, addrpk)

– Compute (c, txmint) := Deposit(pp, v, addrpk)

– Add the deposit transaction txdeposit to L

– Output ⊥

• Q = (Withdraw, idx1, idx2, , addrsk,1, addrsk,2, v
pub, vnew1 , vnew2 , addrnewpk,1,

addrnewpk,2, (sk
a
u, pk

a
u), pk

a
enc,1, pk

a
enc,2, pk

a
enc,3, ADDR)

– Compute rt, the root of a Merkle tree over all coin commitments in LPRO

– For each i ∈ {1, 2} : Let cmi be the idxi-th coin commitment in L, txi be the deposit/withdraw
transaction in LPRO that contain cmi, ci be the first coin in COINPRO with coin commitment cm,
(addrpk,i, addrsk,i) be the first key pair in ADDRPRO with addrpk,i being ci’s address. Compute pathi,
the authentication path from cmi to rt

– Compute (cnew1 , cnew2 , txwithdraw) := Withdraw(pp, rt, path1, path2, addrsk,1,
addrsk,2, v

pub, vnew1 , vnew2 , addrnewpk,1, addr
new
pk,2, (sk

a
u, pk

a
u), pk

a
enc,1, pk

a
enc,2,

pkaenc,3, ADDR)

– Verify that VerifyTransaction(pp, txwithdraw, L) outputs 1.

– Add the withdraw transaction to L.

– Output ⊥.

• Q = (Rollup, Nrollup)

– Look up a queueQcm containingNrollup commitments waiting for rollup in LPRO. (If no such transaction
is found, abort.)

– Let c1, . . . , cn be the coins in Qcm.

– Compute rtold, the root of a Merkle tree over all rolluped coin commitments in LPRO.

– Compute path, the authentication path from commitments to rtold.

– Compute txrollup ← Rollup(pp,Nrollup, Qcm, rtold, path).

– Add c1, ..., cn to COINPRO
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– Output ⊥.

• Q = (Receive, addrpk)

– Look up (addrpk, addrsk) in ADDRPRO. (If no such key pair is found, abort.)

– Compute (c1, ..., cn)← Receive(pp, (addrsk, addrpk), L
PRO).

– Add c1, ..., cn to COINPRO

– Output (cm1, ..., cmn) the corresponding coin commitments.

• Q = (Insert, tx)

– Verify that VerifyTransaction(pp, tx, L) outputs 1. (Else, abort.)

– Add the deposit/withdraw transaction tx to LPRO

– Run Rollup and Reveive for all address addrpk in ADDR; this updates the COINPRO with any coins
that might have been sent to honest parities via tx.

– Output ⊥.

6.2.1 Ledger indistinguishability

Definition 4 Let Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup, VerifyTransaction, Receive,
Audit) be a protocol. We say that Π is L-IND secure if, for every poly(λ)-size adversary A and sufficiently large
λ, AdvL-INDΠ,A (λ) < negl(λ), where AdvL-INDΠ,A (λ) := 2 · Pr[L-IND(Π, A, λ) = 1] − 1 is A’s advantage in the L-IND
experiment.

We now describe the ledger indistinguishability experiment L-IND. This experiment is an interaction challenger
game between an adversary A and a challenger C.
Setup. At the beginning, C samples a random bit b ∈ (0, 1) and public parameters pp ← Setup(1λ), and sends pp
to A. C then initializes two oracle OPRO

0 and OPRO
1 using pp.

Main part. Let Lleft be the current ledger in OPRO
b and Lright be the current ledger in OPRO

1−b . C provides
(Lleft, Lright) to A; A then sends two queries

Q,Q′ ∈ {CreateAddress,CreateAuditKey,Deposit,Withdraw,Rollup,Receive, Insert}

to C, while Q and Q′ should be public consistent. If query type is Insert, C forwards Q to OPRO
b , and Q′ to OPRO

1−b .

Otherwise, C first check if Q and Q′ are public consistent and then forwards Q to OPRO
0 and Q′ to OPRO

1 . Let a0
and a1 be the two oracle answer, C then sends (ab, a1−b) to A.
A and C may repeat the Main part several times. At the end of the experiment, A sends C a guess bit

b′ ∈ (0, 1). C outputs 1 if b = b′, or 0 otherwise.
Public consistency Two queries Q and Q′ are public consistent iff Q and Q′ are the same type. Furthermore,
they are well formatted, and their public information are equal.

6.2.2 Transaction non-malleability

Definition 5 Let Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup, VerifyTransaction, Receive,
Audit) be a protocol. We say that Π is TR-NM secure if, for every poly(λ)-size adversary A and sufficiently large
λ, AdvTR-NMΠ,A (λ) < negl(λ), where AdvTR-NMΠ,A (λ) := 2 · Pr[TR-NM(Π, A, λ) = 1]− 1 is A’s advantage in the TR-NM
experiment.

We now describe the transaction non-malleability experiment TR-NM. This experiment is an interaction challenger
game between an adversary A and a challenger C. At the beginning, C samples pp← Setup(1λ), and sends pp to C.
C then initializes an oracle OPROusing pp. A may send several queries to OPRO. At the end of the experiment, A
sends a withdraw transaction tx′ to C. Let T be the set of all withdraw transaction generated by OPRO. C outputs
1 iff there exists a tx ∈ T s.t. (1) tx′ ̸= tx; (2) VerifyTransaction(pp, tx′, L) = 1; and (3) a serial number revealed in
tx′ is also revealed in tx.
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6.2.3 Balance

Definition 6 Let Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup, VerifyTransaction, Receive,
Audit) be a protocol. We say that Π is BAL secure if, for every poly(λ)-size adversary A and sufficiently large λ,
AdvBALΠ,A(λ) < negl(λ), where AdvBALΠ,A(λ) := 2 · Pr[BAL(Π, A, λ) = 1]− 1 is A’s advantage in the BAL experiment.

We now describe the balance experiment BAL. This experiment is an interaction challenger game between an
adversary A and a challenger C. At the beginning, C samples pp← Setup(1λ), and sends pp to A. C then initializes
an oracle OPROusing pp. A may send several queries to OPRO. At the end of the experiment, A sends C a set of
coin C. C computes the following quantities.

• vunwithdrawn, the total withdrawable coins in C.

• vdeposit, the total value of all coins deposited by A.

• vADDRPRO→A, the total value of payment received by A from addresses in ADDRPRO.

• vA→ADDRPRO , the total value of payment sent by A to addresses in ADDRPRO.

• vbasecoin, the total value of public outputs placed by A on the ledger.

C outputs 1 iff vunwithdrawn + vbasecoin + vA→ADDRPRO > vdeposit + vADDRPRO→A.

6.2.4 Auditability

Definition 7 Let Π=(Setup, CreateAddress, CreateAuditKey, Deposit, Withdraw, Rollup, VerifyTransaction, Receive,
Audit) be a protocol. We say that Π is AUD secure if, for every poly(λ)-size adversary A and sufficiently large λ,
AdvAUDΠ,A (λ) < negl(λ), where AdvAUDΠ,A (λ) := 2 · Pr[AUD(Π, A, λ) = 1]− 1 is A’s advantage in the AUD experiment.

We now describe the balance experiment AUD. This experiment is an interaction challenger game between an
adversary A and a challenger C. At the beginning, C samples pp ← Setup(1λ), and sends pp to A. C then
initializes an oracle OPROusing pp. A may send several queries to OPRO. At the end of the experiment, A
sends a withdraw transaction tx to C. C outputs 1 iff (1) VerifyTransaction(pp, tx, L) = 1; and (2)the outputs of
Audit(msga1,msga2,msga3, pk

a
u, sk

a
enc,1, sk

a
enc,2, sk

a
enc,3) are not equal to the input commitments to tx.

6.3 Proof of Theorem 1

In this section, we will sketch the proof of the theorem 1. Similar to [BSCG+14], we also omit the proof of
completeness. We then prove the security with three separate proofs.

6.3.1 Ledger indistinguishability.

We prove this property by hybrid experiments from the ledger indistinguishability experiment L-IND to a simulation
SIML-IND. In the simulation, the adversary A interacts with a challenger C as in the experiment, except that all
answers are computed independently of the bit B. We then proof that the simulation is indistinguishable from the
real experiments.

The simulation SIML-IND works as follows. The setup stage is similar to the L-IND experiment. However, the
zk-SNARKs for withdrawing coins and ZK-rollup are initialized with two simulations SIMzk

WITHDRAW ,SIMzk
ROLLUP .

Then, the challenger C answers different queries as follows.

• CreateAddress. C behaves as in L-IND, except that C replaces apk in addrpk with a random string. Then, C
stores addrsk in a table and returns addrpk to A.

• CreateAuditKey. The answer is unique to the L-IND experiment.

• Deposit. C behaves as in L-IND, except that C computes k as COMMr(τ ||ρ) where τ is a random string, and
C samples a pkenc and calculates Ct := Eenc(pkenc, r) where r is a random string.
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• Withdraw. C computes rt as the accumulation of all the coin commitments after ZK-rollup on Li. Then, C
samples two uniformly randoms snold

1 and snold
2 . For i ∈ {1, 2}, if addrnewpk,i is generated by CreateAddress, C

samples a random cmnew
i and a random pkenc and calculates Ctnewi := Eenc(pkenc, r) where r is a random

string. For j ∈ {1, 2, 3}, C samples a random kaj and calculates msgaj = SEC.Encka
j
(r) where r is a random

string. Otherwise, calcute cmnew
i and Ctnewi as in the Withdraw algorithm. Let hsig be a random string and

compute all remain value as in Withdraw algorithm. C computes the proof πWITHDRAW from the simulation
SIMzk

WITHDRAW .

• Rollup. C behaves as in L-IND, except that C computes the proof πROLLUP from the simulation SIMzk
ROLLUP .

• Receive. The answer is unique to the L-IND experiment.

• Insert. The answer is unique to the L-IND experiment.

In each case, the answer to A is independent from the bit B. When A guesses the bit B, A can only sample a
random bit b′, i.e., A’s advantage is 0. Next, we will prove that SIML-IND is indistinguishable from L-IND.

Sketch of Proof: We now describe a sequential of hybrid experiments

(L-IND,SIML-IND1 ,SIML-IND2 ,SIML-IND3 ,SIML-IND)

Let qCA be the number of CreateAddress queries issued by A. Let qS be the number of Withdraw queries issued
by A. Let qD be the number of Deposit queries issued by A. For each intermediate experiments, we modify the
experiment and show that it is distinguishable from the previous experiment.

• SIML-IND1 : In experiment SIML-IND1 , we simulate the zk-SNARK. For each withdraw transaction, C computes
the proof πWITHDRAW from a simulation SIMzk

WITHDRAW . For each ZK-rollup transaction, C computes the
proof πROLLUP from a simulation SIMzk

ROLLUP . Since zk-SNARK is perfect zero knowledge, the simulation

proof πWITHDRAW and πROLLUP should be indistinguishable from a real proof. Hence AdvSIM
L-IND1

= 0.

• SIML-IND2 : The experiment SIML-IND3 modifies experiment SIML-IND2 by replacing ciphertext in withdraw
transactions with an encryption of a random string. More precisely, we modify SIML-IND2 so that:

– each time A issues a Deposit query, C samples a pkenc and calculates Ct := Eenc(pkenc, r) where r is a
random string.,

– each time A issues a Withdraw query, for i ∈ {1, 2}, if addrnewpk,i is generated by CreateAddress, C samples
a random pkenc and calculates Ctnewi := Eenc(pkenc, r) where r is a random string. For j ∈ {1, 2, 3}, C
samples a random kaj and calculates msgaj = SEC.Encka

j
(r) where r is a random string.

By Lemma 1, we claim that |AdvSIM
L-IND2 −AdvSIM

L-IND1 | ≤ 2(qD + 5qS)AdvEnc.

• SIML-IND3 : The experiment SIML-IND3 modifies SIML-IND2 by replacing all PRF results with random values.
More precisely, we modify SIML-IND2 so that :

– each time A issues a CreateAddress query, the value apk in addrpk is substituted with a random string
of the same length; and

– each time A issues a Withdraw query, the serial number snold and the signature h are substituted with
random strings fo the same length.

By Lemma 2, we claim that |AdvSIM
L-IND3 −AdvSIM

L-IND2 | ≤ qCAAdvPRF.

• SIML-IND : We already describe the experiment SIML-IND above. More precisely, we modify SIML-IND2 so that
each time A issues a Deposit query, the commitment cm in txdeposit is substituted with a commitment to
a random input. If A issues a Withdraw query, for i ∈ {1, 2}, if addrnewpk,i is generated by CreateAddress, C
samples a random cmnew

i . By Lemma 3, we claim that |AdvSIM
L-IND −AdvSIM

L-IND3 | ≤ (qD + 4qS)AdvCOMM.

By summing over A’s advantages in the hybrid experiments, we can bound A’s advantage in L-IND by AdvL-INDΠ,A (λ) ≤
4(qD + qS)Adv

Enc + 2(qD + 5qS)AdvEnc + (qD + 4qS)AdvCOMM, which is negligible in λ.

Lemma 1 Let AdvEnc be A’s advantages in the IND-CCA and IK-CCA experiments against the encryption scheme
Enc. Since Ecies scheme is an instance of Enc, we use AdvEnc to denotes A’s advantages in the IND-CCA and
IK-CCA experiments against the encryption scheme Ecies. Then after qD Deposit queries and qS Withdraw queries,

|AdvSIML-IND2 −AdvSIM
L-IND1 | ≤ 4(qD + qS)AdvEnc.
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Proof sketch. Let H be an intermediate simulation between SIML-IND1 and SIML-IND2 in which H modifies SIML-IND1

by replacing encrypt key with a new sampled key from the key generation algorithm. We first discuss H and
SIML-IND1 . When A queries CreateAddress, C queries the IK-CCA challenger to obtain (pkenc,0, pkenc,1) and return
pkenc := pkenc,0 to A. When A issues a Deposit query or a Withdraw query, C queries the IK-CCA challenger over
the plain text m and receive Ct∗ := Eenc(pkenc,b,m) where B is chosen by the IK-CCA challenger. C then replaces
Ct with Ct∗ and adds the result txdeposit to the ledger. A outputs a bit b′, which is our answer to the IK-CCA
experiment. If the maximum advantage of the IK-CCA experiment is AdvEnc, by using a hybrid game, we say that

|AdvSIMH −AdvSIM
L-IND1 | ≤ (qD + 5qS)AdvEnc.

We made a similar argument for H and SIML-IND2 . Overall, the advantage is |AdvSIM
L-IND2 − AdvSIM

L-IND1 | ≤
2(qD + 5qS)Adv

Enc.

Lemma 2 Let AdvPRF be A’s advantages in distinguishing PRF from a true random function. Then after qCA

CreateAddress queries, |AdvSIM
L-IND3 −AdvSIM

L-IND2 | ≤ qCAAdvPRF.

Proof sketch. As mentioned in section 4.1, all pseudorandom functions PRF addr
ask

, PRF sn
ask

, and PRF pk
ask

are con-
structed from PRFask

. Let O be the oracle implementing PRFask
or a true random function. Let ask be the

random seed generated by the oracle from the PRF experiment in answering the first CreateAddress query. If O
implements the PRFask

, the experiment distribution is identical to SIML-IND2 . By using a hybrid game, we say that

|AdvSIML-IND3 −AdvSIM
L-IND2 | ≤ qCAAdvPRF.

Lemma 3 Let AdvCOMM be A’s advantages against the hiding property of COMM . Then after qD Deposit queries

and qS Withdraw queries, |AdvSIM
L-IND −AdvSIM

L-IND3 | ≤ (qD + 4qS)AdvCOMM.

Proof sketch. We make a similar argument as in Lemma 2. We replace internal commitments in k in Deposit and
Withdraw with a random value. By using a hybrid game, the advantage is bounded by (qD + 2qS)AdvCOMM. We
then replace the coin commitment in Withdraw with a random value, the overall advantage is (qD +4qS)AdvCOMM.

6.3.2 Transaction non-malleability.

Define ϵ := AdvTR-NMΠ,A (λ). Let T be the set of withdraw transactions generated by OPRO in response to Withdraw
queries. Set h′

sig := CRH(pk′sig) corresponding to tx′. Let pksig be the corresponding public key in tx and set
hsig := CRH(pksig). Let QCA = {ask,1, ..., ask,qCA

} be the set of internal address keys created by C in response
to A’s CreateAddress queries. Let QS = {pksig,1, ..., pksig,qS} be the set of signature public keys created by C in
response to A’s Withdraw queries. Then, we decompose the event in which A wins into the following four disjoint
events.

• EVENTsig : A wins the TR-NM experiment, and there is pk′′sig ∈ QS such that pk′sig = pk′′sig.

• EVENTcol : A wins, and above event does not occur, and there is pk′′sig ∈ QS such that h′
sig = CRH(pk′′sig).

• EVENTmac : A wins, and above two events do not occur, and h′ = PRF pk
a (i|hsig) for some i ∈ {1, 2} and

a ∈ QCA.

• EVENTkey : A wins, and above three events do not occur, and h′ ̸= PRF pk
a (i|hsig) for all i ∈ {1, 2} and

a ∈ QCA.

Clearly, ϵ = Pr[EVENTsig] +Pr[EVENTcol] +Pr[EVENTmac] +Pr[EVENTkey]. Then, we bound the probability of
each event and show that they are all negligible to λ.

Bound the probability of EVENTsig: Define ϵ1 := Pr[EVENTsig]. We proof the statement that ϵ1 is negligible
in λ by contradiction. More precisely, if ϵ1 is not negligible, A can forge the signature with more than negligible
probability, which breaks the SUF-1CMA security.

Let σ′ be the signature in tx′, and σ′′ be the signature in the first withdraw transaction in tx′′ ∈ T that contains
pk′′sig. Let m′ be everything in tx′ other than σ′. Let m′′ be everything in tx′′ other than σ′′. Observe that
whenever tx′ ̸= tx′′ we also have (m′, σ′) ̸= (m′′, σ′′). We first show that tx′ = tx′′ with negligible probability by
contradiction. Since, by the definition of TR-NM, tx′ and tx share the same serial number. Suppose tx′ = tx′′ then
tx and tx′′ also share the same serial number, which is bound by the negligible probability that T contains two
transactions that share the same serial number.

Next, we describe an algorithm B, which uses A as a subroutine, that wins the SUF-1CMA game against Sig
with ϵ1/qP.
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1. B chooses a random i ∈ {1, 2 . . . , qS}

2. B conducts the TR-NM with A. When A issues the i-th Withdraw query, B substitutes pk′′sig in the resulting
transactions tx′′. B then queries the SUF-1CMA challenger and obtain the signature σ′′ for the message m′′

and substitutes σ′′ in tx′′.

3. When A outputs tx′, B looks into tx′ and finds m′ and σ′.

4. If pk′′sig ̸= pk′sig, B aborts; otherwise, B outputs m′ and σ′ as a forgery for Sig.

Because Sig is SUF-1CMA, ϵ1 must be negligible in λ.
Bound the probability of EVENTcol: Define ϵ2 := Pr[EVENTcol]. When EVENTcol occurs, A find a collision

CRH(pk′sig) = CRH(pk′′sig). Because CRH is collision resistant, ϵ2 must be negligible in λ.
Bound the probability of EVENTmac: Define ϵ3 := Pr[EVENTmac]. We state that when EVENTmac occurs,

A could distinguish between the PRF with a truly random. Therefore, ϵ3 must be negligible in λ.
Bound the probability of EVENTkey: Define ϵ4 := Pr[EVENTkey]. If EVENTkey occurs, there exists an

algorithm B s.t. B finds collisions for PRF sn. Therefore, ϵ4 must be negligible in λ.

6.3.3 Balance.

To withdraw more coins than a user owns, A may insert a transaction on the ledger. We now modify the experiment
in a way that does not affect A’s view. For each zk-SNARK instance x := ([(rt, sn, h)], vpub, cmnew

1 , cmnew
2 , hsig,

pkau, [pk
a
enc], [msga]) in a withdraw transaction, C computes a witness a := ([(path, c, addrsk)], c

new
1 , cnew2 , [cma], skau).

C may do so with a knowledge extractor. Afterwards, C obtains an augmented ledger (L, a⃗) where a⃗ is a list of
witness a. Note that (L, a⃗) is a list of matched pairs (txwithdraw, a) where txwithdraw is a withdraw transaction
and a is the corresponding witness. Define ϵ := AdvBALΠ,A(λ). We then define the balance property respected to the
modified BAL experiment. We say an augmented ledger balanced if the following holds:

1. Each (txwithdraw, a) in (L, a⃗) contains openings of two valid coin commitments cm1 and cm2, and each cm is
a output coin commitment of a deposit or withdraw transaction preceding txwithdraw on L.

2. No two (txwithdraw, a) and (tx′
withdraw, a

′) in (L, a⃗) contain openings of the same coin commitment.

3. Each (txwithdraw, a) in (L, a⃗) contains opening of cm1 cm2 cmnew
1 cmnew

2 to value v1 v2 vnew1 vnew2 , and
v1 + v2 = vnew1 + vnew2 + vpub.

4. For each (txwithdraw, a) in (L, a⃗), and for each i ∈ {1, 2}:

(a) If cmi is the output of a deposit transaction txdeposit on L, then the value v in txdeposit is equal to vi.

(b) If cmi is the output of a withdraw transaction tx′
withdraw on L, then its witness a′ contains an opening

of cmi to a value v′ that is eqaul to vi

5. For each (txwithdraw, a) in (L, a⃗), where txwithdraw is inserted by A, if any cm is the output of a previous
transaction tx′, the public address in tx′ is not in ADDRPRO. Recall that ADDRPRO is the set of address
pairs created by A’s CreateAddress queries.

We then prove that A cannot violate each case with more than negligible probability.
A violates Condition 1: By the construction of OPRO, A cannot violate the condition.
A violates Condition 2: If A violates Condition 2, L contains two withdraw transactions txwithdraw and

tx′
withdraw with the same cm. Since both transactions are valid, they must contain different serial numbers, namely

sn = sn′. However, if both transactions withdraw cm but product different serial number, then the corresponding
witness a, a′ contain different openings of cm. This violates the binding property of the commitment scheme
COMM .
A violates Condition 3: By the construction of the NP statement WITHDRAW , this must hold. Otherwise,

the zk-SNARK is violated.
A violates Condition 4: If A violates Condition 4, L contains

1. a deposit transaction txdeposit and a withdraw transaction txwithdraw, or

2. two withdraw transactions txwithdraw and tx′
withdraw
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s.t. both transactions have the same commitment cm but open cm to different values. This violates the binding
property of the commitment scheme COMM .
A violates Condition 5: If A violates Condition 5, L contains an inserted withdraw transaction txwithdraw s.t.

txwithdraw withdraws a coin deposited by a previous deposit transaction txdeposit. Notably, txdeposit’s public address
addrpk = (apk, pkenc) lies in ADDR, and the witness associated to txdeposit contains ask s.t. apk = PRF addr

ask
(0).

One can construct a new adversary B that, by using A as a subroutine, distinguish PRF from a random function.

6.3.4 Auditability.

If the auditors fail to recover the commitments, it implies

1. any decryption of the messages is wrong; or

2. the secret sharing recovery result is wrong; or

3. πWITHDRAW in tx is valid while [cma] ̸= Share(t,n)([cm]).

A violates Condition 1: If A violates Condition 1, this breaks the security of ECIES.
A violates Condition 2: If A violates Condition 2, this breaks the PER-SS of SS.
A violates Condition 3: If A violates Condition 3, this breaks the proof of knowledge of zk-SNARK.

7 Conclusion

In this paper, we proposed an auditable confidentiality protocol for blockchain transactions, which supports both
cross-chain and single-chain transactions. We reduced the transaction cost and made the protocol affordable via
a ZK-rollup scheme. To comply with regulation requirements, the protocol allows authorized auditors to track
transactions. We formally proved the security and implemented the protocol on the Ethereum testnet. The
evaluation result showed that the protocol is highly efficient and practical. In the future, we will realize more
functionalities, e.g., cross-chain swap and general cross-chain smart contracts.
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